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Matter distributions of light nuclei in the three body model
[

6He,6 Li : (α + n + n) and 9Be : (α + α + n)
]

is theo-

retically expressed. As a quantum state of the system was adopted a wave function based on the multi dynamic cluster
model. Within the multi dynamical cluster model with Pauli projection, matter density distribution and matter rms radius
for nuclei 6He , 6Li , 9Be were analytically calculated. Comparisons of calculated matter radii with experimental data
are presented.
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Introduction

Nucleon associations or so-called cluster structures of atomic nuclei have
manifested themselves as a phenomenon when they were discovered in alpha
decay. Consequently, in atomic nuclei there are not only nucleons moving inde-
pendently of each other, but there are separate subsystems like alpha particles. In
this way, having several types of simple structures one able to describe a number
of atomic nuclei within the framework of the cluster model. A clear example of
such systems can be both stable nuclei: 9Be , 6Li , 12C , 16O , and nuclei beyond
the stability: 6He , 9He , 9Li , 11Li . These nuclei have very distinctive properties
determined by the relative motion of clusters such as rms radii, binding energy,
spectra of low lying excited states and so on. In a significant number of cases they
find explanations only within the cluster model. The study of such problems re-
mains one of the priority tasks due to the rapid development of experimental
techniques for studying properties of atomic nuclei and with increasing interest
in understanding the internal structure of the such kind of nuclei.

In the cluster model, the diagonalization of the matrix elements of the hamil-
tonian is greatly simplified by reduction of degrees of freedom. Such problems
are successfully solved by a variational method, where they are used not only in
nuclear physics, but also in particle physics, in solid-state physics and in atomic
physics. There remains only a question of basis choice and interaction potentials.

The multi dynamic cluster model with the Pauli project [1] was successfully
applied in studying the structure of nuclei: 3He , 3H , 6He , 6Li , 9Be and 9B ,
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using the method of stochastic variations without introducing any free parame-
ters. In this regard, it should be noted that the well known configurations: cigar-
shaped and helicopter-like, were first discovered in this model for 6He and 6Li
[2]. Also within the model a good description of many observables for the above-
mentioned nuclei is given. In particular, low-lying excitation spectra, static char-
acteristics, electromagnetic form factors and decay constants [3,4].

It would be interesting to know a value of matter radius, which was not sub-
ject of research of the multi dynamic cluster model. If it is included the cluster
model in, then, one may come closer to understanding the structure of the nu-
cleus. Objects are being researched are 6He , 6Li and 9Be . The aim is to calculate
theoretically matter rms of the latter, and compare it with other data sources.
Since they have explicitly expressed cluster structure, it is also interesting to in-
vestigate matter density distribution. The article first gives a representation of
the wave function of the three-particle system, then the theoretical expression of
matter density distribution, and at the end results and discussions.

Theoretical model
The multi dynamic cluster model with Pauli project

The model [1] uses three pair pseudo-potentials to describe the three-body
system, taking into account forbidden states by the Pauli principle:

˜Vij = Vij + ∆ij, (1)

where Vij is an interaction potential of (ij) subsystem and ∆ij = λΓ is a orthog-
onalizer with the λ constant and with Γ projector, which for forbidden f state
is as follows:

Γ = Γ( f ) = ∑
m f

|φ f m f
(x)〉〈φ f m f

(x′)|δ(y − y′). (2)

The principle plays a huge role in the structure of the nucleus, which does not
allow overlapping of two constituent particles. Thus, the three body pseudo-
Hamiltonian including kinetic energy and pseudo potentials looks like this

˜H = H0 + ∑
i<j

˜Vij. (3)

The trial function is given in the form:

ΨJMJ TMT
=

N

∑
ı=1

Cı ϕ
γ

ı (1, 23) (4)

with expansion coefficients Cı and dimension N . A basis function ϕ
γ̃

ı (i, jk) is
taken by a product of space, spin and isospin parts

ϕ
γ

ı (i, jk) = [Φλ,l
L (i, jk)× χ

s
S(i, jk)]JMJ

τ
t
TMT

(i, jk), (5)

where γ is a set containing all of moments. Spatial part Φ
λ,l
L (i, jk) is constructed

with the Gaussian

Φ
λ,l
L (i, jk) = xλ

i yl
i exp(−αx2

i − βy2
i )[Yλ

(x̂)× Yl(ŷ)]LML
, (6)
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Figure 1. Example of the three body system of 9Be on relative Jacobi coordinate sets with cyclically particle
permutations. The last two sets include the scheme of taking into account a size rα of sub-alpha particles.

where λ is a orbital moment of the jk pair conjugated to the x Jacobi coordinate,
while l is the moment of i spectator conjugated to the y relative coordinate (see
Figure 1) and α , β are non linear parameters.

The basis function (5) is convenient for the ability to convert into other sets of
relative Jacobi coordinates. In particular, in the spatial part a transformation of
the set i set into the set j is

Φ
λ,l
L (i, jk) = ∑

γ̃

A
j←i
Ω

Φ
˜λ,˜l
L (j, ki), (7)

where the sum is constrained by λ + l = ˜λ + ˜l condition. A recouple coefficient

A
j←i
Ω

with rotation matrix Ωj←i is

A
j←i
Ω

= (−1)λ+l ∑
λ1,λ2,l1,l2

Ω
λ1
11 Ω

λ2
12 Ω

l1
21Ω

l2
22

√

[λ]![l]![λ][l][λ1][λ2][l1][l2][˜λ][˜l]

[λ1]![λ2]![l1]![l2]!
×

(

λ1 λ2 λ

0 0 0

)(

l1 l2 l
0 0 0

)





λ1 λ2 λ

l1 l2 l
˜λ

˜l L



 ,

(8)

where [x] = 2x + 1 ,

(

j1 j2 j3
m1 m2 m3

)

and





j1 j2 j3
j4 j5 j6
j7 j8 j9



 are the Wigner 3-j and

9-j symbols consequently.

Matter density distribution

An operator of matter density distribution of the three body system takes the
sums of all three clusters and brings it from the center of system mass

ρ(R) = ∑
cluster=i,j,k

ρcluster(R). (9)

In particular, nucleon cluster is treated as point like particle, while in alpha
cluster one takes into account its internal structure (see Figure 2) ρα(rα) =

ρ0 exp
(

−γ0r2
α

)

with parameters γ0 = 0.7024 , ρ0 = 0.4229 [5]. So correspond-

ing matrix elements for both nucleon cluster and alpha cluster are

ρNi
(R) = 〈ϕγ(i, jk)|δ(R− yi)|ϕ

γ(i, jk)〉

ραi
(R) = 〈ϕγ(i, jk)|ρα(R− yi)δ(yi − rα)|ϕ

γ(i, jk)〉
(10)
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Figure 2. Matter density distribution of nuclei 6He , 6Li and 9Be .
The sum of functions for each nucleus is normalized to it’s atomic number.

In the case of the cluster is in another set of coordinate, one can express taking
the equation (5)

ρNj
(R) = ∑

γ̃

A
j←i
Ω

A
j←i
Ω
〈ϕγ̃(j, ki)|δ(R− yj)|ϕ

γ̃(j, ki)〉

ραj
(R) = ∑

γ̃

A
j←i
Ω

A
j←i
Ω
〈ϕγ̃(j, ki)|ρα(R− yj)δ(yj − rα)|ϕ

γ̃(j, ki)〉.

Using the well known expansion of exponent function

exp(−ρ0R · y) = 4π ∑
k

√
2k + 1 ik(ρ0Ry)Ykk

00

(

̂R, ŷ
)

and an analytical expression of integral kind of

∫ ∞

0
y2l+k+2 exp(−βy2)ik(µy)dy =

√

π

2

(2l)!!(µ)k

(

1
2 β

)l+k+3/2
exp

(

µ
2

β

)

L
k+ 1

2
l

(

−
µ

2

β

)

one able to obtain equation (10) analytically for both nucleon and alpha clusters
as follows

ρNi
(R) =

1

2

(

R

y0

)2l+2

Γ

(

3

2
+

λ

2

)

∑
ı

CıC

exp

(

−
(βı+β )

y2
0

R2

)

(

αı + α

)
3
2+

λ

2

ραi
(R) = (2π)

3
2 ρ0 ∑

ı

CıC

Γ
(

3
2 + λ

)

(2l)!! L1/2
l

(

− (γ0 )R2

βı+β +γ0

)

(

αı + α

)
3
2+λ

(

βı + β  + γ0

)
3
2+l

×

exp

((

−γ0 +
γ

2
0

βı + β  + γ0

)

(

R

y0

)2
)

(11)

where y0 =
mj+mk

mi+mj+mk
, ik(x) - modified spherical Bessel function of the first kind,

Lk+1/2
l (x) - associated Laguerre polynomial and Γ(x) - Gamma function.
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Results and discussions

Energy minimization processes was carried out with BFW [6], the modified
SBB [3] and RSC [7] potentials for αα -, αn - and nn - subsystems, respectively.
The attracting BFW potential with forbidden states is parametrized in gaussian
form and describes the experimental phase shifts well. The modified SBB po-
tential also excludes forbidden states, describes the phase shifts of the scattering,
moreover, takes into account even-odd splittings. All of findings for nuclei 6He ,
6Li and 9Be are presented in Table 1. For a detailed discussions of similar results
of ground state properties see [3,4].

In a Figure 2 matter density distributions of each cluster of nuclei 6He , 6Li
and 9Be are shown. It should be noted that the sum of cluster density distribu-
tions is normalized to its nucleus atomic number. A feature of function behavior
of nucleonic density component is extended tail, and at small distances peculiar
minimum (except of 6Li ). These facts reflect that nucleons are moving away from
the center of mass, and are extremely weakly bound, thereby confirming the clus-
ter structure this nuclei. As for the nucleon density of lithium at a small distance,
an insignificant minimum is due to the high binding energy of the nucleus.

Table 1.
Ground state property and comparison of calculated matter radii with experi-
mental data

6He 6Li 9Be

Eb, MeV (this work) 0.23 3.26 1.58
Eb, MeV 0.97 3.7 1.57
rmat, f m (this work) 2.97 2.447 2.62
rmat, f m 2.62 [8] 2.45 [9] 2.61 [10]*

*The data was based on the AMD model

Matter rms radii of nuclei 6He , 6Li and 9Be were also calculated. Results
in comparison with other works is given in Table 1. An overestimation of calcu-
lated matter rms with the experimental value revealed for 6He . In this instance,
it should be pointed out that the theoretical value of the binding energy of 6He
within the framework of the multi dynamical cluster model also had a distinction
with the experimental value to the difference 0.7 MeV. Perhaps, a basis of reval-
uation rests on a wave function which does not take into account the symmetry
and is in incompleteness of the variational basis. Values of the matter rms of 6Li
and 9Be are in good agreement with other sources.

Conclusion

Within the multi dynamical cluster model with Pauli projection, matter density
distribution and matter rms radius for nuclei 6He , 6Li , 9Be were analytically
calculated. The behavior of these functions was explained. Also, comparisons of
radii with other sources are given. Theoretical calculations are in good agreement
with given data, except for the 6He nucleus. By and large, submitted theoretical
method of calculating matter density distribution makes possible to understand
the internal structure of the three body system.
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