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The results of calculations of the Landau level and cyclotron mass in strong magnetic fields in an InAs
quantum well based on the two-band model are presented. The calculations were performed in the
approximation of infinity of the depth of the quantum well, taking into account the Landau level of the
second subband. It is shown that taking into account the cyclotron transition of electrons within the
second subband satisfactorily describes the experimental data obtained in strong magnetic fields in the
InAs/In0.81Ga0.19 As/Inx Al1−x As heterostructure.
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Introduction

Conduction electrons in a narrow-gap semiconductor InAs have a small effective

mass [1] ( m∗
≈ 0.023 ÷ 0.03m0 ) and, therefore, a high mobility. Therefore,

InAs-based quantum wells (QW) formed in various heterostructures (HS) are

promising for creating new generation electronic and optoelectronic devices [2-4],

technologies for obtaining InAs based heterostructures are widely described [5-8].

Cyclotron resonance (CR) is one of the effective methods for studying the band

structure and spectrum of carriers in QWs. The CR can be used to reveal the
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nonparabolicity of the dispersion law and obtain information about the features

of the zone of new materials. In weak magnetic fields, the effective carrier mass

at the Fermi level can be determined. In strong (quantizing) magnetic fields,

this method makes it possible to determine the distance between Landau levels

(cyclotron energy) between which optical transitions occur and thereby obtains a

cyclotron mass [9-12].

In a two-dimensional electron gas, the energy levels of electrons lie far from

the bottom of the conduction band, which is especially important for the non-

parabolicity of the dispersion law. Application of a strong magnetic field leads to

a large value of the cyclotron and Zeeman energies [9].

The study of the properties of current carriers in strong magnetic fields in

QWs based on InAs continues today [13, 14]. The results of such studies can be

applied to various technological developments.

In [14], InAs QWs based on structure InAs/In0.81Ga0.19As/InxAl1−xAs ( x =

0.52-0.81) were studied. The CR was used to measure the effective mass of the

mCR and gCR – factor of the electron at strong magnetic fields (up to 70 T) and

at different temperatures. The experimental results were interpreted qualitatively

on the basis of the two-band Kane model and in the QW model of infinite depth,

however, no quantitative comparison was made.

In strong magnetic fields and in wide QWs, the Landau levels of different

subbands can approach or overlap sufficiently. Mathematical modeling of such

processes using experimental values of mCR and gCR makes it possible to better

understand the band structure and the location of the Landau levels of the 1st

and 2nd minibands.

The aim of this work is to calculate the Landau levels of the 1st and 2nd

subbands and, on the basis of these data, the dependence of the cyclotron mass

mCR on the magnetic field is determined. The calculations will be carried out on

the basis of the two-band Kane model and the QW model of infinite depth. On

the basis of these calculations, possible interpretations of the experimental results

are discussed [14].

Basic formulas

Let us consider the motion of one electron in the QW conduction band. Then,

in the presence of a magnetic field applied perpendicular to the QW plane, the

electron spectrum can be represented as [9, 15] (two-band model)
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Here, εg is the band gap, mn and gn are the effective mass and the spin splitting

factor at the bottom of the conduction band, m0 and g0 = 2 are the mass and

the spin splitting factor of a free electron, respectively, N – is the Landau level

number, σ – is the ±1/2 spin index, h̄ω0 – is the cyclotron energy of free electron
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In the QW, the electron motion in the z direction is also quantized. For

example, in the QW model with an infinite potential barrier V = ∞ , and width

L -, the value of the wave vector kZ in equation (1) is equal to kZ = π n/L , n is

the number of the spatial quantization level.

According to equations (1) and (2), the electron spectrum depends on the

magnitude of the magnetic field B , the number of the spatial quantization level

n , the number of the Landau level N , and the spin index σ . The cyclotron mass

is determined by the equation [9, 15]

m0

mCR(B)
=

ε (n, N + 1, σ)− ε (n, N, σ)

h̄ω0
. (3)

The chemical potential and the fraction of electrons in the Landau levels can

be found from the equation
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eB

πh̄

1
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f (ε(n, N, σ), µ, T) =

= D0h̄ω0
1

2 ∑
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exp [(ε(n, N, σ)− µ) /T] + 1
. (4)

where, µ – is the chemical potential, f (ε(n, N, σ), µ, T) – is the Fermi-Dirac

distribution function. T, [eV] denotes the quantity kBT , kB – is the Boltzmann

constant, D0 = m0/π h̄2 = 413 · 1012/ eV · cm2

Dependence of the cyclotron mass on the magnetic

field

As seen from equation (3), to calculate the dependence mCR(B) , it is necessary

to know the Landau levels ε(n, N, σ) , which can be found from equation (1).

Therefore, first we plot the field dependence of the Landau levels ε(n, N, σ) .

The band parameters of InAs used in the calculations is given in Table 1. The

experimental value of the electron concentration in the sample where the mCR(B)
dependence was investigated is also given [14].

Table 1.

Band parameters of InAs QW.

Eg, [eV] 0.42

mn, [m0] 0.023

gn -15

L, [nm] 20

nS, [cm−2] 3.6×1011

The calculated field dependences of the Landau level ε(n, N, σ) and the Fermi

energy for InAs QWs of width L = 200
o
A are shown in Figure metricconverter-

ProductID1. In1. In calculating the Fermi energy from equation (4), we assumed

T =20.5 K and nS = 3.6 × 1011cm−2 .
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Figure 1. Electron Landau levels and Fermi energy in InAs QW with L =20 nm depending on the magnetic field. Solid
lines – levels for the first subband, dashed lines – for the second subband. The thick line is the Fermi energy calculated

from equation (4) at T = 20.5K and nS = 3.6 × 1011cm−2 .

It can be seen from the graph that, the ground level with n = 1, N = 0

approximately linearly depends on the magnetic field B , and the upper lines

differ markedly from the linear law, which is due to the nonparabolicity of the

conduction band. Starting from approximately B ∼ 30 T, the ground Landau

level of the second subband lies lower than the second Landau level of the first

subband, i.e. ε(2, 0, σ) < ε(1, 1, σ) . Then, at high temperatures and strong

fields ( B > 30T ), the ε(2, 0, σ) level can mainly be partially populated. As can

be seen from the graph, in strong fields ( B > 30 T) all electrons lies at the

level ε(1, 0, 1/2) .

Figure 2 shows comparisons of the results of the calculation of mCR with the

experimental points [14] obtained at the temperature T = 20.5 K.

As can be seen from Figure 2, the lower three experimental points are well

described by the considered model as the cyclotron transition (1, 0, σ) → (1, 1, σ) .

It should be noted that at temperature T = 20.5 K, the Landau levels ε(1, 1, σ)
or ε(2, 0, σ) cannot be populated, since, in this case, the thermal energy kBT ∼

0.0018 eV is much less than the differences ε(1, 1, σ) − ε(1, 0, σ) or ε(2, 0, σ) −
ε(1, 0, σ) .

However, if we assume the presence of electrons with a long lifetime that hit

the level ε(2, 0, σ) upon photoexcitation, then the origin of the three experimental

points can be explained by cyclotron transitions (2, 0, σ) → (2, 1, σ) . This is seen

from Figure 2, where the calculated points are shown by dashed lines.
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Figure 2. Comparisons of the field dependence of the cyclotron mass mCR with the experimental points [14] obtained at
temperature T = 20.5 K. Calculations were performed for InAs QWs with L =20 nm. The numbers indicate interlevel

transitions, see equation (3).

Conclusion

Calculations showed that when interpreting experimental data, taking into ac-

count the Landau levels of the second subband is also important. It turned

out that, within the framework of the simple model under consideration, the

experimental points mCR(B) measured at temperature T = 20.5 K are associated

with cyclotron transitions (1, 0, σ) → (1, 1, σ) and (2, 0, σ) → (2, 1, σ) . The correct

picture is restored when the model explains the concentration and field depen-

dences of the Shubnikov-de-Haas oscillations, optical transmissions, cyclotron

mass and g -factors measured experimentally [14]. This requires solving prob-

lems taking into account the finiteness of the QW depth in the heterostructure

InAs/In 0.81 Ga 0.19 As/In x Al 1−x As.
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