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The three-body model α + n + p for 6Li is applied as a probe with elastic scattering of α -particles.
Elastic scattering is described within the optical model framework, while the rising of the cross section at
the backward scattering angles is treated by means of an approximation of the np transfer mechanism.
Both parts of the optical potential are obtained by fitting the depths of the same folding potentials
to experimental data. The folding potential, in turn, is based on the three body-wave function of 6Li.
Spectroscopic amplitudes for the np cluster are extracted in calculations based on the CRC method.
One-step and two-step transfer mechanisms are taken into account for the np transfer mechanism.
The calculation results indicate the dominance of the one-step mechanism over the two-step transfer
mechanism of the np cluster.
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Introduction

Light atomic nuclei can create nucleon associations often called clusters. The

clusters in atomic nuclei can be the simplest particles: d , t , 3 He, and α . Since

the α -particle has a large binding energy 28.29 MeV compared to other clusters,

it remains the most likely cluster type that is formed from the simplest particles.

The nucleus 6 Li is a good example in terms of probing cluster models. The

structure was studied by means of the stochastic variational method [1, 2], hyper-

spherical harmonics [3, 4], and no-core shell model [5, 6] approaches. In particular,

the cigar-like and helicopter-like geometrical configurations were revealed within
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the three body model framework in [1, 3]. Moreover, in this work the ground state

properties, electromagnetic static characteristics of 6Li , and the spectroscopic

factor of the α + d configuration in 6Li were calculated.

The structure of 6Li was also studied via nuclear reactions [7]. Within the

Distorted wave Born approximation (DWBA) and Coupled Reaction Channels

(CRC) methods the spectroscopic factor of α + d in 6Li was obtained [8]. By

means of the CRC calculations, the deformation parameter and the spectroscopic

amplitudes were also extracted [9, 10].

Elastic scattering of α particles on 6Li at a laboratory energy 166 MeV was

investigated in Ref. [11]. An anomaly was detected as a rising in the differential

cross section at backward scattering angles, and it was treated by the elastic

transfer of the np -cluster. Using the wave function built up with the hyper-

spherical harmonics approach, the authors could gain good agreement of the

calculated cross section with experimental data in the entire range of angles.

The aim of this work is to study the elastic scattering of α -particles on 6Li

in matters of the three body model α + p + n . This work proposes alternative

methods to study the elastic scattering α + 6Li in relation with Ref. [11]. To

do this, the previously developed theoretical method [12, 13] should be applied,

which was also used in the 3He +9 Be nuclear reactions [14]. The calculation of

the double-folding potential for the α + 6Li system and the implementation of

the two-step transfer of the np -cluster are the novelty of the current work.

In this work, the elastic scattering is treated within the Optical model (OM).

Both real and imaginary parts of the Optical potentials (OP) are executed by the

Double-folding (DF) potential. For the purposes of making the calculations more

realistic, the density distribution function of the nuclear matter of 6Li , as part of

the DF potential, is obtained on the basis of the three body wave function. In the

first section, brief theoretical methods are given about the density distribution

function of nuclear matter, and DF potential. A more detailed description of the

density function using the three body wave function can be found in Refs. [13,

15], and of the double folding model see Refs. [16, 17]. In the second section the

results and discussions are given. Lastly, the conclusions are drawn at the end.

Theoretical method

The density distribution function

The density distribution function of nuclear matter of 6Li within the three body

model can be expressed as follows:

ρLi(R) = ∑
k={αnp}

ρk(R), (1)

where the sum goes over all the clusters k = {α, n, p} in 6Li . The density

function of the cluster k can have

ρk(R) = ⟨ Ψ
JM
tot | ρ̂k | Ψ

JM
tot ⟩, (2)
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here, Ψ
JM
tot is the total wave function of 6Li , which is built up on the basis of

the Gaussian functions by means of the Stochastic variational method [1]. The

operator of the density function ρ̂k is defined as

ρ̂k ≡







δ
(

yk − y
(k)
0 R

)

, for k-th nucleons,

ρα

(

yα − y
(α)
0 R

)

, for α-cluster,
(3)

where yk is the Jacobi coordinate between the α -cluster and the center of masses

of the np -cluster, R is the radius from the cm of 6Li , and δ(z) is the delta

function. The internal density distribution function of the α -cluster ρα(r) can

take the form:

ρα(x) = ρ0 exp
(

−γ0x2
)

. (4)

Provided the function ρα(x) is normalized to unity, its parameters have

γ0 =
3

2

1

< r2
α >

, ρ0 =
(γ0

π

)

3
2

. (5)

Here, the square root of < r2
α > is the rms matter radius of the α -particle, which

can be equal to 1.461 f m [16].

Optical potential

The numerical calculations of elastic scattering can be performed in the framework

of the OM with the optical potential given by:

U(r) = −VV(r)− iWV(r) + VC(r), (6)

where r is the distance between the α -projectile and 6Li , and VV , WV , VC

are the real volume, imaginary volume, and Coulomb potentials, respectively.

The volume potentials of two colliding spherical nuclei can be represented as

parametrized functions, e.g. in the Woods-Saxon (WS) potential form:

VV (r) =VV
0 frV ,aV (r) ,

WV (r) =VW
0 frW ,aW (r) ,

fr0,a0 (r) =
1

1 + exp
(

r−r0
a0

) , (7)

where V0 is the depth of the potential, r0 is the average distance, and a0 is the

diffusion parameter.

The Coulomb term has been taken as the interaction of a point-charge with a

uniformly charged sphere

VC(r) =







Z1Z2e2

2rC

(

3 − r2

r2
C

)

, for r ≤ rC,

Z1Z2e2

r , for r > rC.
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The volume term of the OP can also be obtained by means of the DF model.

Using the density distribution function of the nuclear matter of 6Li (1), the

double folding potential can take the following form:

VV (r) =Nr,iV
DF (r)

VDF (r) =
∫ ∫

drαdrLi ρα (rα)Vnn (rαLi) ρLi (rLi) . (8)

where rαLi = |r + rα − R| , the density distribution function of the α -projectile

ρα can have the same shape as in Eq. (4). The Nr,i normalization parameters

are usually fitted to elastic scattering data in accordance with the dynamics of

nuclear reaction. The Vnn effective nucleon-nucleon interactions are the sum of

three Yukawa potentials, i.e. M3Y-potentials. The M3Y-potentials usually have

the form:

Vnn(r) =
3

∑
i=1

Ni
exp(−µir)

µir
. (9)

The parameters Ni , µi of the NN-potential can be taken in the M3Y-Paris

parametrization, which are in Ref. [18].

Results and discussions

The density distribution function

A distinctive feature of the obtained results is the extended tail of the density

function for the 6Li nucleus in Figure 1. This is caused by the properties of

valence nucleons in the three-body system. In particular, the density function of

the core ρα tends to zero rapidly as the radius r increases in comparison with

the nucleon density function ρN .

The main contribution to the density functions beginning from r ≃ 3.0 f m

is due to two valence nucleons. Another point in the behaviour of the density

function ρN is the maximum at r ≃ 1.8 f m . In particular, the bump of 6Li

is sufficiently remarkable. This feature of the function explains that valence

nucleons move away from the center of mass.
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Figure 1. The components of the density distribution function of the nuclear matter of 6Li calculated within the three
body model. The solid, dashed, and dot-dashed curves correspond to the total ( ρLi ), α -cluster ( ρα ), and np -cluster

( ρN ) density functions, respectively.
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Figure 2. The folding potential VDF(r) calculated with the density functions of the nuclear matter of 6Li. The α + α

designation is for the VDF
α+α potential, while 2N + α is for the VDF

2N+α potential.

Elastic scattering

To calculate the elastic scattering cross section, we used the DF potential with

the density depended DDM3Y-Paris effective NN-potential [18]. The three body

density functions of nuclear matter were used to calculate the potential. Due

to the additive feature of the density function, it is possible to look into the

interaction of the α -projectile with the clusters inside the nucleus 6Li:

VDF(r) = VDF
α+α(r) + VDF

2N+α(r) (10)

In Figure 2, the function of the interaction potential VDF
α+α(r) of the α -projectile

with the α -cluster rapidly tends to zero, while the function of the interaction

potential of the α -projectile with the np -cluster slowly decreases. It should also

be noted that starting from the distance r ≃ 4.0 the main contribution is due to

the interaction of the projectile with the np -cluster.

The folding potential was chosen to be the real part of the optical potential

with the Nr fitting parameter. As regards the imaginary part, the same shape of

the real part was used but with the parameters Ni . The Woods-Saxon potential

with six parametrizations was taken from [11] for comparison with the DF

potential. The theoretical curves based on the DF and WS potentials show good

agreement with experimental data. It should be noted that the DF potential for

the elastic scattering α + 6Li reaction depends only on two parameters in contrast

to the WS potential which depends on six parameters.

The calculated differential cross section performed in the OM framework

describes well the experimental data except the backward scattering angles. The

potential parameters used in the OM calculations are listed in Table 1.



106 Eurasian Journal of Physics and Functional Materials, Vol.6(2).

𝛼

6Li

6Li

𝛼

d

6Li 𝛼

n p

𝛼 6Li

5Li

5Li

Figure 3. Schematic representation of the elastic transfer nuclear reaction, on the left - one-step, on the right - two-step
transfer mechanisms.

Elastic transfer

The rising of the elastic scattering cross section starting from 90 ◦ suggests the

existence of additional reaction mechanisms. In this case, in order to register

the same particle as the elastically scattered projectile, the np -cluster must be

transferred to the target at the backward angles. The transfer mechanisms of the

nuclear reaction α + 6Li → 6Li + α are shown schematically in Figure 3.

The differential cross section of the transfer reactions is calculated within the

CRC method by means of the FRESCO code [19]. For the nuclear reaction α +
6Li → 6Li + α the differential cross section can be written as follows

dσ

dΩ
(θ) = | f (θ)OM + fone−step(π − θ) + ftwo−step(π − θ)|2, (11)

where the amplitude fone−step is the amplitude of the finite-range transfer, and

ftwo−step is the amplitude of the two-step transfer mechanism (see, e.g. [17, 19]).

The input and output channel potentials were taken as a double folding

potential, and the optical potential with global optical parametrizations was

chosen for α particles in the intermediate channel [20]. The calculations have

shown that the cross sections depend insignificantly on the selected potential for

the intermediate channel. The wave functions of the bound states were chosen by

fitting the potential depth to the binding energies of the composite systems.

The results of calculating the differential cross section of the elastic collision of

the α + 6Li system and the results of calculations for the elastic transfer are shown

in Figures 4 and 5. The mechanism of elastic collision in the nuclear reaction

prevails over other mechanisms at the forward scattering angles. However,

starting from 90 ◦ it can be seen that the main contribution to the cross section is

caused by the one-step transfer of np -cluster of 6Li.

In Figure 5, the one-step transfer dominates over the two-step transfer mecha-

nism by one order of magnitude at the backward scattering angles. That makes

Table 1.

The parameters of the potentials used in OM calculations for thr α + 6Li nuclear

reaction. For more details, see the text.
−V0, MeV Rv, fm av, fm −W0, MeV Rw, fm aw, fm χ2/N

DF Nr=2.0 Ni=1.8 11.61

WS 102.5 1.78 0.820 11.8 4.11 0.950 15.43
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Figure 4. The differential cross section of the elastic scattering of 6Li by α -particles at Elab = 166 MeV with the different
potentials: the double folding potential DF (blue solid), the WS (gray dashed) [11]. Experimanetal data are taken from

[11].
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Figure 5. The cross sections of the elastic transfer reaction are represented in terms of the transfer mechanisms: elastic
scattering (solid gray), one-step transfer (gray dashed), two-step transfer of np -cluster (dotted) and their coherent sum

(solid blue). Experimental data are from Ref. [11].
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total sense since the np -cluster is less bound than n : EBE(d) = 1.5 MeV and

EBE(n) = 5.7 MeV. The best agreement with the experimental data is obtained if

one uses the spectroscopic amplitudes for the configuration 2S1 ≃ 0.7 , and for

the configuration 2D1 ≃ 0.5 . The obtained results based on the CRC calculations

are in good agreement with the experimental data.

Conclusions

The nucleus 6Li was theoretically investigated in terms of the cluster structure on

the example of the α particle elastic scattering at 166 MeV. The nucleus under

study is suggested to be the three body system α + p + n . This conception is

fixed by applying the three body wave function based on the Gaussian functions.

The three body wave function was used in order to obtain the density distribution

function of the nuclear matter of 6Li. The density distribution function was

implemented in the Double-folding model calculations. The DF potential made it

possible to look into the interaction of the α -projectile withe clusters of 6Li.

The obtained DF potential can describe the elastic scattering data with two

parameters. Taking into account the proposed mechanisms of the np -cluster, it

was possible to get good agreement of the calculated differential cross section

with the available data in the full range of scattering angles.
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