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Studies of the properties of nuclei remote from the "valley of nuclear stability" make it possible to predict
the properties of new nuclides based on systematic accumulations of data on the structure of nuclear
matter. New phenomena in the behavior of nuclear matter are also being discovered. Such cores are
called "exotic". The production of exotic nuclei is a multi-stage process, during which various approaches
of theoretical and experimental physics are applied. One of the ways to obtain nuclei are fragmentation
reactions of relatively light nuclei with high energy (more than 100 MeV), as a result of which exotic
nuclei with different A and Z can be obtained. In this article, a study of the applicability of the
high-energy approximation (HEA) in modeling such direct nuclear reactions was conducted and the
results of comparing this approach with the exact solution of the Schrodinger equation using the example
of a rectangular potential barrier and a Gaussian potential barrier are presented. Comparison of different
approaches provides an understanding of the limitations of their applicability for further study of the
properties of nuclei in interaction with each other and for solving the Schrodinger equation with similar
potentials considered.
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Introduction

The study of the region of the isotope map remote from the so-called "valley of

nuclear stability" is an urgent direction of modern research in nuclear physics,

since the systematic accumulation of data on the structure of nuclear matter
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depending on A and Z allows us to refine theoretical models and make reliable

predictions of the properties of new nuclides based on them. Secondly, new, often

unusual phenomena are discovered in the behavior of nuclear matter: the effects

of nuclear shells, new modes of nuclear decay, neutron halos, Borromian nuclei,

soft excitation modes, etc., which are called exotic [1].

The area of exotic nuclei is very different from the "valley of stability". Moving

away from this region to the boundaries of the isotope map is accompanied by a

change in the ratio of nucleons in the nucleus (the number of protons or neutrons

in the nucleus increases), which leads to a decrease in the binding energy of the

nucleus. At some point, the value of the binding energy goes through zero and

becomes negative. Thus, the core becomes nuclear unstable (unbound). On the

isotope map, the regions of bound and unbound nuclei are separated by lines

called "stability boundaries".

The process of studying the characteristics of nucleus-nuclear collisions of

exotic, loosely coupled nuclei at the stability boundaries also requires a detailed

study of the properties of nuclear matter, the structure and mechanisms of

interaction in this area of the isotope map. The study of exotic nuclei is closely

related to the development of high-level experimental facilities for producing

beams of radioactive nuclei, and the development of new theoretical models for

describing the nuclear structure [2-4]. On the task of comparing the results of

calculations with experimental data, the theorist needs to work in the same team

with the experimenter, since conducting experiments with exotic nuclei is a rather

complex and multi-stage process.

In this paper, the applicability of the high-energy approximation to describe

the fragmentation reactions of exotic nuclei was investigated. In fragmentation

reactions of relatively light nuclei with high energy (more than 100 MeV), exotic

nuclei with different A and Z can be obtained in experiments [5, 6]. With an

increase in the energy value of the incoming particle beam to several GeV, the

cross-sections of the formation of secondary nuclei also increase. In this article,

the applicability of the high-energy approximation (HEA) [7] was investigated

in solving problems of modeling direct nuclear reactions and the results of

comparing this approach with the exact solution of the Schrodinger equation on

the example of a rectangular potential barrier and a Gaussian potential barrier

are presented.

The analytical calculation method allows us to consider the limitations that

arise when using two methods on simple models of nuclear interaction. A

well-known problem of quantum theory, with which it is convenient to start

searching for a solution to the problem, is the problem of direct scattering on

a one-dimensional potential barrier. Rectangular or stepped barriers with the

property of a sharp change in the value of the potential at the boundaries act as

such a barrier. To simulate more realistic scattering taking into account the short-

range strong interaction, the Schrodinger equation with a Gaussian potential is

often used, the value of which changes smoothly at the boundaries. Since the

problem of passing a particle through a potential barrier has a solution of the

Schrodinger equation for a rectangular barrier and is well studied [8], comparison

of this solution with the solution in the framework of the HEA for rectangular
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and Gaussian potentials provides an understanding of the limitations of their

applicability for further study of the properties of nuclei in interaction with

each other and for solving the Schrodinger equation with similar considered

potentials.

High-energy approximation

Research in the field of high energies, when the collision of two nuclei occurs as

a rapid peripheral process, has been conducted for many years in order to obtain

exotic nuclei in a wide range of A and Z . Studies of fragmentation reactions,

which are characterized by a high level of isotope yield in comparison with other

reactions, are especially important for these purposes, which is explained by the

selected energy range of incoming particles and a fairly small angular distribution

of reaction products relative to the initial beam direction [9].

Various theoretical approaches are used to study nuclear reactions at high

energies, among which one can single out the so-called "high-energy approxi-

mation" (HEA), which, despite a number of restrictions imposed on it, makes it

possible to more accurately estimate the intensity of the predominant part of the

scattering [10].

In this paper, the one-dimensional scattering problem was studied in the

framework of a high-energy approach and compared with the exact solution of

the Schrodinger equation for the problem of passing a particle through potential

barriers of simple types (rectangular barrier and Gaussian potential barrier). The

one-dimensional scattering problem has special properties that must be taken

into account. The scattering process can occur only in two directions: either to

maintain the direction of movement of the particle forward, or to change the

direction of movement when reflected backward. While this makes the problem

a bit unrealistic, it has the advantage of being mathematically more transparent.

The one - dimensional Schrodinger equation has the form

(
d2

dx2
+ k2)Ψ(x) =

2m

h̄
V(x)Ψ(x) (1)

Now we assume that the energy of the incident particle significantly exceeds the

magnitude of the potential V(x) , and is also large enough that the wavelength

of the particle is much smaller than the width of the potential a

V

E
≪ 1, ka ≫ 1 (2)

(In order-of-magnitude ratios such as this, the symbol V should be interpreted

as a measure of the absolute magnitude of the potential). Under these conditions,

we can assume that the backscattering will be very weak, that the wave function

of the particle can be written in the form of Ψ(x) in a good approximation:

Ψ(x) = exp (ikx)ϕ(x), (3)

where ϕ(x) is a function that slowly changes depending on the wavelength of

the particle.
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Substituting 3 into the Schrodinger equation 1, we get

(

2ik
d

dx
+

d2

dx2

)

ϕ(x) =
2m

h̄2
V(x)ϕ(x) (4)

Now the approximation is to discard the d2

dx2 – term of the equation, which

assumes that ϕ changes slowly depending on the wavelength. In this case, the

equation reduces to
dϕ

dx
= − i

h̄v
V(x)ϕ(x) (5)

Now, if the equation Ψ(x) = exp (ikx)ϕ(x) reduces to an incident plane wave at

a point x = −∞ (i.e. if backscattering is neglected), then ϕ(−∞) = 1 is required

as a boundary condition. Thus, we get:

ϕ(x) = exp

(

− i

h̄v

∫ x

−∞

V(x′)dx′
)

(6)

And the wave function takes the form:

Ψ(x) = exp

(

ikx − i

h̄v

∫ x

−∞

V(x′)dx′
)

(7)

Results and discussion

Rectangular potential barrier

Let us compare the exact solution of the Schrodinger equation with a high-energy

approximation in the case of a simple one-dimensional motion of a particle

through a rectangular potential barrier of the form:

V(x) =

{

V0 if 0 ≤ x ≤ a

0 if x < 0 and x > a
(8)

The high-energy approximation [10] implies the passage of a particle with

mass m and energy E of the potential barrier V(x) in the case when the energy

value significantly exceeds the value of the potential E ≫ V . In this case, for the

exact solution of the Schrodinger equation, it is fair to consider the case when

the energy of the particle exceeds the height of the potential barrier E ≫ V , to

compare the two solutions.

Solving in this case the stationary Schrodinger equation 1, we obtain as a

result a system of equations:

ψ1 = A1 exp(ik1x) + B1 exp(−ik1x), i f x < 0

ψ2 = A2 exp(ik2x) + B2 exp(−ik2x), i f 0 ≤ x ≤ a

ψ3 = A3 exp(ik1x), i f x > a

(9)

where k1 =
√

2mE
h̄ , k2 =

√

2m(E−V(x))
h̄ , a is the width of the potential barrier.
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According to the conditions of crosslinking of wave functions and their deriva-

tives at the boundaries of the potential barrier at x = 0 and x = a , we obtain

the following coefficients and the corresponding type of wave functions:

ψ1 = exp (ik1x) +

((

k2
1 − k2

2

)

exp (−ik2a)−
(

k2
1 − k2

2

)

exp (ik2a)
)

((k1 + k2)2 exp(−ik2a)− (k1 − k2)2 exp(ik2a))
exp(−ik1x),

ψ2 =
(2k1(k1 + k2) exp(−ik2a))

((k1 + k2)2 exp(−ik2a)− (k1 − k2)2 exp(ik2a))
exp(ik2x)+

(−2k1(k1 − k2) exp(ik2a))

((k1 + k2)2 exp(−ik2a)− (k1 − k2)2 exp(ik2a))
exp(−ik2x),

ψ3 =
(4k1k2 exp(−ik1a))

((k1 + k2)2 exp(−ik2a)− (k1 − k2)2 exp(ik2a))
exp(ik1x)

(10)
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Figure 1. Passage of a particle through a rectangular potential barrier if E ≫ V : a) 1H , b) 9Li , c) 10Be .

Figure 1 shows the solution of the Schrodinger equation when scattering

on a rectangular barrier in the case when the energy of the incident particle

exceeds the value of the potential E ≫ V . The solutions were considered in

comparison for different particles used in experiments to study fragmentation

reactions as a beam hitting the target: using high-energy protons in Figure 1(a),

in the reaction 9Li +9 Be →8 He + p in Figure1(b), as well as in the reaction
10Be +9 Be →8 He + 2p in Figure 1(c).

Let’s consider a one-dimensional scattering problem in the case when the

energy of particles hitting the barrier significantly exceeds the value of the

potential, it is possible to use a high-energy approximation. Then the solution of

the Schrodinger equation according to 7 will take the form:

ψ1 = A1 exp(ikx), i f x < 0,

ψ2 = A2 exp(ikx − i

h̄v

∫ x

−∞

V(x′)dx′), i f 0 ≤ x ≤ a,

ψ3 = A3 exp(ikx + δ(x)), i f x > a

(11)

where ϕ(x) is the scattering phase.

According to the law of conservation of the number of particles falling on a

potential barrier:

R + D = 1, R =
|jR|
jI

, D =
jR
jI

(12)
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where R is the coefficient of reflection of the wave from the barrier, and D is the

coefficient of passage of the wave through the barrier.

Knowing at the same time that the flux density vector in these formulas is

expressed in terms of the wave function:

j⃗ =
ih̄

2m
[ψ∇ψ∗ − ψ∗∇ψ] (13)

Let’s find the type of wave functions, when passing a potential barrier by a

particle:

ψ1 = exp(ikx),

ψ2 = exp

(

ikx − iVmx

h̄2k

)

,

ψ3 = exp

(

ikx − iVma

h̄2k

)

(14)

where k =
√

2mE
h̄ , and the expression − iVma

h̄2k
is the phase ϕ(x) , which persists

after passing the barrier at distances x → ∞ .
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Figure 2. Passage of a particle through a rectangular potential barrier in a high-energy approximation at different values
of the barrier height: 1. 1H : a) E ≫ V , d) E > V ; 2. 9Li : b) E ≫ V , e) E > V ; 3. 10Be : c) E ≫ V , f) E > V .

Figure 2 shows the solution of the Schrodinger equation for scattering on

a rectangular barrier in the case of a high-energy approximation: 1) when the

energy of the incoming particle exceeds the value of the potential E ≫ V , 2)

when the energy of the incoming particle is close to the value of the potential

E > V . In comparison, one can see the best fulfillment of the condition of

"stitching" wave functions at the boundaries of the potential barrier in the case

when E ≫ V .

Gaussian potential barrier

The one-dimensional Gaussian potential:

V(x) = V0 exp
(

−ax2
)

(15)
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as well as the rectangular potential, is often chosen to illustrate simple quantum

mechanical phenomena. Within the framework of the analytical solution, the form

of the system of equations (10), for the Schrodinger equation with a rectangular

potential is similar to the solution with a Gaussian potential:

ψ1 = exp(ik1x)+
(

k2
1 − k2

2

)

exp(−ik2a)−
(

k2
1 − k2

2

)

exp(ik2a)

(k1 + k2)
2 exp(−ik2a)− (k1 − k2)

2 exp(ik2a)
exp(−ik1x),

ψ2 =
2k1 (k1 + k2) exp(−ik2a)

(k1 + k2)
2 exp(−ik2a)− (k1 − k2)

2 exp(ik2a)
exp(ik2x)+

−2k1 (k1 − k2) exp(ik2a)

(k1 + k2)
2 exp(−ik2a)− (k1 − k2)

2 exp(ik2a)
exp(−ik2x),

ψ3 =
4k1k2 exp(−ik1a)

(k1 + k2)
2 exp(−ik2a)− (k1 − k2)

2 exp(ik2a)
exp(ik1x)

(16)

where k1 =
√

2mE
h̄ , and k2 takes the form k2 =

√
2m(E−V0 exp(−ax2))

h̄ , and a is the

width of the potential barrier.
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Figure 3. Passage of a particle through a gaussian potential barrier if E ≫ V : a) 1H , b) 9Li , c) 10Be .

Within the framework of the high-energy approximation, the solution of

the Schrodinger equation with a Gaussian potential, taking into account the

normalization for the flux density, takes the form:

ψ1 = exp(ikx),

ψ2 = exp

(

ikx − iV0m

2h̄2k

√

π

a
(erf (

√
ax) + 1)

)

,

ψ3 = exp

(

ikx − iV0m

2h̄2k

√

π

a
(erf (a3/2) + 1)

)

(17)

where ϕ(x) = − iV0m

2h̄2k

√

π
a (erf (a3/2) + 1) is t he phase of the wave function. A

comparison of Figures 3 and 4 shows that the high-energy approximation works

much better when choosing a smoother Gaussian potential, since, unlike the

rectangular potential barrier, this model is more close to the real model of the

core. Figures 1-4 demonstrate the applicability of two approaches to solving

the problem of passing a potential barrier by a particle at energy values of an

incoming particle significantly exceeding the value of the potential. Figure 5
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Figure 4. Passage of a particle through a gaussian potential barrier in a high-energy approximation at different values of
the barrier height: 1. 1H : a) E ≫ V , d) E > V ; 2. 9Li : b) E ≫ V , e) E > V ; 3. 10Be : c) E ≫ V , f) E > V .
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Figure 5. The dependence of the phase angle on the energy of particles impinging on a rectangular potential barrier:
green shows the phase with an exact solution, red - with a high-energy approximation

shows the dependence of the phase of the wave function that occurs during the

passage of the barrier: Figure 5 shows that at high energies, the solution in the

high-energy approximation is close to the exact solution, despite the limitations

imposed due to the neglect of backscattering from the walls of the potential

barrier.
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Conclusions

In this paper, the applicability of the high-energy approximation in solving

problems of modeling direct nuclear reactions was investigated, in particular in

the framework of studying the fragmentation reactions of exotic nuclei, and the

results of comparing this approach with the exact solution of the Schrodinger

equation on the example of simple types of potential barrier are presented. To

solve the problem of direct scattering on a one-dimensional potential barrier, the

interaction of particles with a rectangular barrier with the property of a sharp

change in the value of the potential at the boundaries was considered, and to

simulate a more realistic scattering taking into account the short-range strong

interaction, the interaction with a Gaussian potential was considered, the change

in the value of which at the boundaries occurs smoothly. Comparison of the two

solutions provides an understanding of the limitations of their applicability for

further study of the properties of nuclei in interaction with each other and for

solving the Schrodinger equation with similar potentials considered.
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