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Neutron transfer and nuclear breakup processes in reaction with weakly bound nucleus 11Li at energies
near the Coulomb barrier are investigated in the framework of the time-dependent Schrödinger equation.
The evolution of probability density of outer weakly bound neutrons of 11Li in the collision with 208Pb
was studied. The probabilities and cross sections of outer neutrons removal (breakup processes and
transfer to target nucleus) were calculated. Theoretical predictions of the two-neutron removal probability
values were obtained for angles from 140◦ to 180◦ . The theoretical results have close similarity with
experimental data for the two-neutron removal in reaction 208Pb(11Li,9 Li) .
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Introduction

The latest experimental data on elastic scattering of light weakly bound lithium

nuclei 8,9,11Li indicates enhancement of the total cross section for reactions with

these nuclei as compared to reactions with 6,7Li [1-6]. This effect is especially

strongly manifested for light nuclei with a neutron halo [7]. So-called halo nuclei

with broad distribution of weakly bound nucleons are studied more than twenty

years, e.g. see [8, 9]. Our previous work [10] was devoted to investigation neutron

transfer and nuclear breakup processes in 11Li + 9Be and 11Li + 12C reactions at

low energies in the framework of the time-dependent Schrödinger equation. In
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this approach we carry out a theoretical description of the experimental data on

direct nuclear reactions of the weakly bound 11Li halo nucleus with a heavy 208Pb

target at near barrier energies. The experimental data described in this paper were

obtained by the authors of [11, 12] at the TRIUMF facility (Vancouver, Canada).

Theory and numerical methods

The structure of the 11Li projectile nucleus and the 208Pb target nucleus

described in framework the shell model of a spherical nucleus without spin-orbit

interaction, as in [10]. Taking into account spin-orbit interaction in the used

approach does not lead to essential distinctions in the results, see [13]. The
208Pb nucleus has a slight deformation with parameter quadruple deformation

β2 = 0.0544 . It confirms the possibility of application of the spherical shell model

to description 208Pb nucleus. The results of calculations of single-particle energy

levels of neutrons are presented in Figure 1. The three parameters of the Woods-

Saxon potential of the mean field are the radius RWS = rWSA1/3 , the diffuseness

aWS and the depth VWS of potential well. For both nuclei the ”universal” values

of rWS (1.347 fm) and aWS (0.7 fm) were chosen from [14], and potential depth

VWS was varied. For neutron in the topmost occupied level the separation energy

is equal to experimental value 7.37 MeV for 208Pb nucleus and 0.396 MeV for 11Li

nucleus.

Figure 1. Single-particle neutron energy levels in the 11Li nucleus and upper levels in the 208Pb nucleus in shell models
without spin-orbit interaction.

The normalized radial wave functions Rnl(r) for the neutron levels are shown

in Figure 2. The radial wave functions Rnl(r) were calculated by integration from

large values of radius to small values, see e.g. [15, 16].

The normalization condition for all radial wave functions was
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rmax
∫

0

R2
nlr

2dr = 1 (1)

where the upper bound rmax was equal to 40 fm. For optimization of calculations

we reduced the upper bound rb < rmax , the values of rb and 1 − J << 1 with

integral J

J =

rb
∫

0

R2
nlr

2dr (2)

are given in Table 1. The values rb may be considered as the bounds of the neutron

distributions (“clouds”).

Table 1.

The bounds rb of the neutron distributions and the values of 1− J for

normalization integral (2).

Nucleus 11Li 208Pb

rb , fm 20 15

Level 1p 2f 3p 1i 2g 3d 4s

1− J 2 · 10−3 4.6 · 10−6 3 · 10−5 2 · 10−6 1.5 · 10−4 2 · 10−3 2 · 10−3

Figure 2. Radial part Rnl(r) of the wave functions for neutron levels of the 11Li and 208Pb nuclei in the shell model
without spin-orbit interaction.
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In the central field of the nucleus the wave functions of the neutron with

certain values of the orbital moment l and its projection on the z axis are equal to

ψnlml
(r,θ,ϕ) = Rnl(r)Ylml

(θ,ϕ) , here Ylm are spherical harmonics.

Evolution of wave function of outer neutron in field of colliding nuclei is

described by the time-dependent Schrödinger equation (TDSE)

ih̄
∂Ψ

∂t
= −

h̄2

2m
∆Ψ + V (~r;~r1(t),~r2(t))Ψ (3)

Here ~r1 (t) , ~r2 (t) are the radius-vectors of the centers of the colliding nuclei

with masses m1 and m2 , which moved along classical trajectories. The equations

of classical mechanics for colliding nuclei have the form:

m1̈~r1 = −∇r1
V12(

∣

∣

∣~r1 −~r2

∣

∣

∣), m2̈~r2 = −∇r2V12(
∣

∣

∣~r1 −~r2

∣

∣

∣) (4)

where V12(r) is the nucleus-nucleus potential in the Akyuz-Winther form [17]. The

well-known fourth-order Runge–Kutta method of the Cauchy problem for ordinary

differential equations was used for numerical solving Eq. (4) in combination with

numerical solving Eq. (3) in the center of mass system. TDSE is solved iteratively

in time with the fast complex Fourier transform [18] on a spatial grid with a plane

of symmetry (the collision plane). A detailed description of the solution of the

equation without spin-orbit interaction for nuclear reactions is presented in our

previous work [10]. The lattice spacing in the TDSE calculation is 0.3 fm, which

is substantially smaller than 0.8 fm in a typical time-dependent Hartree-Fock

calculation [19]. The colliding nuclei are en-closed in a box of typical dimensions

105× 105× 130 fm 3 .

The initial conditions Ψ (~r, t = 0) for numerical solving of the time-dependent

Schrödinger equation is the wave function of stationary state ψnlm in the moving

projectile nucleus

Ψ (~r, t = 0) = ψnlm (~r−~r10) exp

(

i
m~ν10~r

h̄

)

(5)

here ~ν10 is velocity of 11Li nucleus in the initial point ~r10 in the center of mass

system.

The scattering angles in the center of mass system were calculated by numerical

simulations for large times when the nucleus-nucleus interaction potential can be

neglected. The scattering angle θc.m. in the center of mass system is equal to the

rotation angle of the velocity vector

θc.m. =



















































sgn (νx)
π
2 , if νz = 0

π, if νx = 0, νz > 0

0, if νx = 0, νz < 0

arctan
(

−
νx
νz

)

, if νz < 0,

π− arctan
(

νx
νz

)

, if νz > 0, νx > 0,

−π− arctan
(

νx
νz

)

, if νz > 0, νx < 0,

(6)

where νx, νz – the projection of the projectile velocity vector calculated by equation

(4). To relate the angles between the in the center-of-mass θc.m. and laboratory
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frames θlab following equation was used

tanθlab =
sinθc.m.

cosθc.m. + m1/m2
(7)

Results of calculations

To verify the accuracy of the TDSE solutions, the probability of the neutron

remaining in the 11Li nucleus during the free motion of 11Li at an energy of 24.3

MeV was calculated. The probability that the neutron remained in the projectile

nucleus 11Li can be calculated as an integral over the region S1 , which is a sphere

with a center at ~r1(t) and a radius r1 = 20 fm (see Table 1)

pr =

∫

S1

|Ψ|2 dV (8)

At the end of the movement of the 11Li nucleus to a distance of 85 fm, the value

of the integral (8) was 0.99528. The lost probability determines the error of the

numerical solution of the Schrödinger equation equal to 0.47%. The errors of the

calculations are depended on the lattice spacing. It is possible to reduce the error

by several orders of magnitude by reducing the lattice spacing, but this will lead to

an increase in the number of nodes and counting time. Therefore, to optimize the

computational processes, a grid step was selected with an allowable error of less

than 0.5%. The evolution of the probability density of an outer neutron during free

motion of the 11Li nucleus is shown in Figure 3. It can be seen that the probability

density does not change over time.

Figure 3. Evolution of probability density of outer neutron of 11Li during the free motion of nucleus. Time scale is from
left to right. Gradient scale is logarithmic.

The Coulomb barrier for central collision 11Li + 208Pb is equal to 28.51 MeV for

nucleus-nucleus potential in the Akyuz-Winther form [16]. The evolution of the

probability density of outer neutron of the 11Li nucleus in collisions with the 208Pb
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nucleus at energies of 24.3 and 29.8 MeV (these energies in the center-of-mass

frame are equal to 23.1 and 28.3 MeV, respectively) is shown in Figures 4 and

5. It can be seen, the TDSE solution allowed us to visualize the dynamics of the

processes taking place. At the close distance between the colliding nuclei the outer

neutrons of 11Li nucleus are collectivized and common neutron “cloud” is formed

(panels b, f in Figures 4 and 5). When the nuclei move away from each other

neutron “cloud” is divided into three parts (panels c, d, g, h in Figures 4 and 5).

First part is neutron “cloud” remaining in projectile nucleus 11Li and second part

is neutron “cloud” transferred into states of target nucleus unoccupied by other

neutrons. Third part corresponds to free neutrons in states of continuum energy

spectrum (breakup of 11Li nucleus to 10Li + n ).

Figure 4. Evolution of probability density of outer neutron of 11Li for central collision (a-d) and for grazing collision
(e-h) with 208Pb at E = 24.3 MeV ( Ec.m. = 23.1 MeV) and impact parameters b = 0 and b = 12 fm. Time scale is from left to

right.

During the grazing collisions of nuclei the transfer probability of one outer

neutron may be determined as

ptr =

∫

S2

|Ψ|2 dV (9)

where S2 is a sphere with a center at and a radius r2 = 15 fm (see Table 1). As can

be seen from panels d, h in Figures 4 and 5 the neutron transfer process is more

intensive for collision at energy of 29.8 MeV ( Ec.m. = 28.3 MeV), this energy is

closer to the Coulomb barrier 28.5 MeV.

The transfer process was accompanied by the transition of the neutron to the

continuum state, i.e. the breakup of the projectile. The probability of breakup

pbr = C · (1− ptr − pr) (10)

where C is a variable (adjustable) parameter. Parameter C was introduced to take

account of slowly transition of neutron to states of continuum spectrum (panels

c, d, g, h in Figures 4 and 5). It is assumed that the released neutrons initially

appear in the peripheral region of the target nucleus in the form of a compact



25 Eurasian Journal of Physics and Functional Materials, Vol. 4(1)

three-dimensional wave packet and then gradually leave it when the packet

spreads. Our calculations with C = 1.5 gives close similarity with experimental

data.

Figure 5. Evolution of probability density of outer neutron of 11Li for central collision (a-d) and for grazing collision (e-h)
with 208 Pb at E=29.8 MeV ( Ec.m. =28.3 MeV) and impact parameters b=0 and b=12 fm. Time scale is from left to right.

The 11Li nucleus is an excellent example of the so-called Borromeo system, in

which none of the two-particle subsystems ( 9Li + n, n + n ) forms a bound state.

The removal of the one neutron leads to the breakup of the 10Li nucleus to n and

the 9Li nucleus. In our calculations the two-neutron removal probabilities in

reaction ( 11Li, 9Li ) was determined by

p−2n = 1− (1− ptr − pbr)
2 (11)

The neutron transfer to the unoccupied bound states of the discrete spectrum

in the 208Pb nucleus, the probabilities of transfer to the states of the continuous

spectrum (nuclear breakup) and the two-neutron removal probabilities as functions

of distance of the closest approach Rmin(b, E) are shown in Figure 6.

Figure 6. The neutron transfer ( ptr ) to the unoccupied bound states of the discrete spectrum in the 208Pb nucleus, the
transfer to the states of the continuous spectrum ( pbr ) and the two-neutron removal ( p˘2n ) probabilities as functions of

the distance of the closest approach Rmin(b, E) .

The experimental values of the two-neutron removal probabilities in collisions

of 11Li with 208Pb nucleus at energies of 24.3 and 29.8 MeV shown in Figure 7
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were determined as the ratio of 9Li events to the sum of 9Li and 11Li events for a

given scattering angle [11]. Note that, according to experimental data, the high

yield of 9Li at backward angles is comparable with the yield of 11Li at 24.3 MeV

and 70% more at 29.8 MeV. Calculations indicate that at 29.8 MeV, the 9Li yield

is greater due to the greater probability of neutron transfer to the target. As can

be seen from the Figure 7, theoretical calculations describe the experimental data

values gradually increase with increasing angle. Moreover, theoretical predictions

of probability values are obtained for angles from 140◦ to 180◦ . It should be

noted that one of the advantages over other models of nuclear reactions is that

TDSE approach allow us to calculate with good accuracy the probabilities of the

channels neutron transfer and nuclear breakup.

Figure 7. The neutron transfer ( ptr ) to the unoccupied bound states of the discrete spectrum in the 208Pb nucleus, the
transfer to the states of the continuous spectrum ( pbr ) and the two-neutron removal ( p˘2n ) probabilities angular

distributions, in the laboratory frame, for the reaction 11Li + 208Pb . The circles represent the experimental data [11].

The cross-sections for two-neutron removal σ−2n and neutron transfer σtr

channels are obtained by integrating over the impact parameter b

σ−2n (E) = 2π

∞
∫

bmin

p−2n(Rmin(b, E))bdb (12)

σtr (E) = 2π

∞
∫

bmin

ptr(Rmin(b, E))bdb (13)

where bmin corresponds to Rmin = 1.2 ·
(

A1/3
p + A1/3

t

)

, and Ap , At are mass

numbers of the projectile and the target. In Table 2, the experimental values of

the total reaction cross sections and the two-neutron removal cross sections are

compared with the data obtained based on the TDSE solution. The obtained

two-neutron removal cross sections correspond to experimental data. It can

be noted that the total neutron transfer cross section is much smaller than the

two-neutron removal cross section. Although, at backward angles, the neutron

transfer process has a significant contribution to two-neutron removal probabilities.
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Table 2.

The cross-sections for two-neutron removal σ−2n and neutron transfer σtr

channels and the total reaction cross-sections.

Elab Exp. [12] σ−2n Theory σ−2n Theory σtr Exp. [12] σR

24.3 MeV 5100 mb 4863 mb 105 mb 5400 mb

29.8 MeV 6500 mb 5800 mb 300 mb 7800 mb

Conclusion

The evolution of the probability density and the probability of transfer and

breakup were determined based on a numerical solution of the time-dependent

Schrödinger equation for outer weakly bound neutrons of the 11Li nucleus.

Calculations indicate that at 29.8 MeV, the 9Li yield is greater than at 24.3 MeV due

to the greater probability of neutron transfer to the target. Theoretical predictions

of the two-neutron removal probability values were obtained for angles from 140◦

to 180◦ . The neutron transfer process does not give a large contribution to the

total two-neutron removal cross sections, although this is observed for values at

backward angels.
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