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The article studied the effect of annealing on the structure and properties of zirconium dioxide coatings
obtained by detonation spraying. Detonation spraying was realized on a computerized detonation spray-
ing complex of the new generation CCDS2000. Determined that coatings made of zirconium dioxide
are characterized by high adhesive strength of adherence to the substrate. Thermal annealing of coated
samples was performed at temperatures of 900-1200 ◦ C. It was determined that the microhardness of zir-
conium dioxide coatings increases by 10-25% depending on the annealing temperature after annealing.
The results of nanoindentation showed that the nanohardness of the coatings after annealing at 1000 ◦ C
increases by 50%. It was determined that after annealing at 1000 ◦ C, the elastic modulus of the coatings
increases, which indicates a decrease in plasticity and an increase in the strength of the coatings. X-ray
diffraction analysis showed that the phase composition of coatings before and after annealing consists
of t-ZrO 2 . After annealing occurs there is an increase in the degree of t-ZrO 2 tetragonality. Electron
microscopic analysis showed that an increase in the number and size of micro-continuity in the form of
thin layers after annealing. Determined that increase the hardness of zirconium dioxide after annealing
at 900-1200 ◦ C is associated with a higher degree of tetragonality t-ZrO 2 phase.

Keywords: zirconium dioxide, coating, detonation spraying, hardness, annealing, microstructure, phase,
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Introduction

High-speed spraying methods can significantly expand the capabilities of tradi-

tional thermal spraying coatings used to protect parts from wear and corrosion

[1-4]. Gas-thermal high-speed methods for producing coatings include methods

of detonation [5], high velocity air-gas plasma (HVAGP) [6] and high velocity

oxygen-fuel coating (HVOF) spraying [7]. Among them, the most promising

is detonation spraying. Detonation spraying is one of the methods of thermal

spraying of coatings, which is carried out using a special detonation gun filled

with explosive gas mixture. A powdery spray material is used to form a coating.

In the process of detonation, the particles of the powder are accelerated to high

speeds (up to 1000 m/s), their melting and deposition on the sprayed surface [8].

The detonation method is promising for obtaining heat-resistant and heat-

protective coatings on the blades of gas turbine engines due to the low porosity

of the coatings and the saving of the chemical composition of the initial powder

in the coatings, as well as the high adhesion strength of the coatings. Zirconium

dioxide coatings are often used as upper thermal barrier layers of heat-protective

coatings [9, 10]. There is very little work devoted to the study of zirconium

dioxide obtained by detonation coatings. At the same time, detonation coatings

allows one to obtain a set of properties necessary for heat-protective coatings:

high adhesion of the coating, thickness up to 300 µm, significant porosity, as well

as the ability to adjust the structure and properties of the coating by selecting

processing parameters. Therefore, the study of structural transformations in

detonation coatings of zirconium dioxide during heat treatments is of great

interest. This work is devoted to studying the impact of thermal annealing on the

structure and hardness of zirconium dioxide coatings.

Materials and methods of research

Detonation coatings were obtained on a computerized complex of new generation

detonation spraying CCDS2000 (Computer Controlled Detonation Spraying), [11-

14]. A general view and a schematic diagram of the detonation spraying process

are presented in Figure 1. The channel inside the gun barrel is filled with gases

using a high-precision gas distribution system, which is controlled by a computer.

The process begins with filling the channel with carrier gas. After that, a certain

portion of the explosive mixture is supplied in such a way that a layered gas

medium is formed, consisting of an explosive charge and a carrier gas. Using

a carrier gas stream, the powder is injected into the barrel (using a computer-

controlled feeder) and forms a cloud. The substrate is placed at a certain distance

from the exit from the trunk. After part of the powder is injected, the computer

gives a signal to initiate detonation. This is realized using an electric spark. The

duration of explosive combustion of a charge is about 1 ms. a detonation wave is

formed in the explosive mixture, which in the carrier gas transforms into a shock

wave. Detonation products (heated to 3500-4500 K) and carrier gas (heated by a

shock wave to 1000-1500 K) move at a supersonic speed. The interaction time of
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gases with the sprayed particles is 2-5 ms. Particle velocities can reach 800 m s −1

[15-18].

Figure 1. Computerized detonation complex CCDS2000 (a) and its circuit diagram (b).

Stainless steel 12X18H10T was chosen as a substrate. The samples were

sandblasted before coating. A powder of zirconium dioxide stabilized with

yttrium oxide was used to obtain coatings. The particle size of the powder was

up to 25-30 µm. Thermal annealing of the coated samples was carried out in a

laboratory tube resistance furnace SUOL-0.4.4/12-M2-U4.2 in a vacuum of 10 −2

Pa at temperatures of 900-1200 ◦ C during 1 h. The temperature was measured and

controlled by a VRT-2 precision thermoregulator using two thermocouples of the

CCI 1378 type. The microstructure of the coatings was studied by metallographic

analysis using a Neophot-21 microscope and scanning electron microscopy using

JSM-6390LV and PhenomProX scanning electron microscopes. The microhardness

of the samples was measured by the indentation method of a diamond indenter

on a PMT-3 device in accordance with GOST 9450-76, at a load of 200 g and

exposure under a load of 10 s. The phase composition of the samples was

studied by X-ray diffraction analysis on an X’PertPro diffractometer using CuK α

radiation. The measurement of hardness and elastic modulus was determined by

the indentation method on a «NanoScan - 4D compact» nanohardness meter in

accordance with GOST R 8.748-2011 and ISO 14577 indentation with a load of 0.1

N.

Research results and discussion

Adhesion is one of the main factors determining the quality of the coating. In

Figure 2 shows testing the adhesive strength results of coatings by scratch testing.

Registration various parameters during the testing process allow recording vari-

ous stages of coating failure. So, Lc1 indicates the moment when the first crack

appears, Lc2 - peeling of the coating sections, Lc3 - plastic abrasion of the coating

to the substrate [19]. Visible that ZrO 2 coatings, the first crack is formed at load

Lc1 =11.6 H. Then the process continues with a certain cycle. The coating partial

abrasion until substrate was judged by a sharp change in the intensity of the

growth of the friction force. This happened at load Lc3 =29.65 H. This significance

Lc3 said value indicates a high adhesion strength of the coatings to the substrate.

Figure 3 shows the dependences of the microhardness variation along the

depth of the experiment sample before and after annealing at different temper-

atures. The maximum increase in microhardness is observed in samples after
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Figure 2. Results of the scratch test coatings made of zirconium dioxide.

annealing at 1000 ◦ C. The maximum depth of the hardened layer for all coatings

is 400 µm, i.e. corresponds to the thickness of the coating.

Figure 3. Microhardness of coatings from zirconium dioxide.

The region of thermal influence and the diffusion zone are not observed

according to metallographic analysis and microhardness. This is due to the fact

that during detonation sputtering the substrate heats up to only 200-300 ◦ C, that

the surface of the substrate does not undergo structural and phase transforma-

tions, and also during annealing the diffusion processes do not occur between

the zirconium dioxide coating and the iron-based substrate at the indicated

temperatures.

The modules of elasticity and nanohardness of the coatings were determined

on the results of nanoindentation (Table 1). The results showed that the nanoso-

lidity increases in comparison with the sample before and after annealing. In

this case, the highest value of the nanohardness of 15.8 GPa is observed after

annealing at 1000 ◦ C. It can be seen that after annealing at 1000 ◦ C, the elastic

modulus of the coatings increases, which indicates a decrease in plasticity and an

increase in the strength of the coatings.
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Table 1.

The results of nanoindentation.

Coatings Hanohardness, GPa Young’s modulus, GPa

ZrO2 initial 9.9 176

ZrO2 after annealing at 900◦C 11.6 178

ZrO2 after annealing at 1000◦C 15.8 245

ZrO2 after annealing at 1100◦C 12.8 174

ZrO2 after annealing at 1200◦C 8.59 147

We can note a clear discrepancy (1.5 times) in the quantitative values of the

results with good qualitative agreement by comparing the results of determining

the hardness of the material at different loads on the indenter (microhardometry

(Figure 3) and nanosolidometry (Table 1). This can be explained by the fact that

during nanocontact interaction, due to the small (tens of nanometers) dimensions

of the indent, the degree of imperfection of the material under the indent is

significantly reduced, which helps to bring the behavior of real material closer to

ideal [20].

Figure 4 shows the diffraction patterns of the coatings before and after anneal-

ing. The results of x-ray structural analysis of coatings showed that the coating in

the initial and after annealing consists of the t-ZrO 2 phase. The diffractogram

of samples after annealing differs from the diffractogram before annealing in

that instead of single lines (211) and (222), the t-ZrO 2 phase gives double lines.

Also, after annealing the pairs of closely spaced each other lines (002) - (110)

and (004) - (103), the t-ZrO 2 phases are moved wider apart. All this is related

an increase in the tetragonality of the t-ZrO 2 phase. So as known [21] that the

distance between paired lines depends on the c/a ratio. The larger it is, i.e., the

greater the degree of tetragonality, the paired lines are further apart each other.

In turn, the degree of tetragonality depends linearly on the oxygen content of

zirconium dioxide. In our case, an increase in the degree of tetragonality after

annealing due to an increase in the oxygen content is quite possible, since the

annealing of the samples was carried out in a low vacuum.

Based on x-ray diffraction analysis, it can be claimed that the increase in the

hardness of zirconium dioxide after annealing is associated with an increase in

the tetrogonality of the t-ZrO 2 phase. Since the greater the degree of tetragonality

of the tetragonal phase, the higher the strength of the material [22].

It can be seen on Figure 5 that thermal extraction at 1000 ◦ C based on struc-

tural influence is not provided. However, an increase in the number and size

of microcontinuities in the form of thin layers is observed. This helps to reduce

internal stresses associated with operation. The formation of microcontinuities in

the form of thin interlayers is the reason for the strong discrepancy in the data on

the microhardness and nanosolidness of the coating.

Figure 6 shows SEM-images of coatings and the results of X-ray microanal-

ysis. The coating has a classic structure characteristic of gas thermal spraying

methods. The coating is characterized by the presence of high density and uni-

formity as well as the presence of individual pores. Two groups of pores can be

distinguished: rounded micro-discontinuities several micrometers in size and
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Figure 4. X-ray diffraction patterns of coatings from zirconium dioxide before and after annealing.

Figure 5. SEM-images of coatings from zirconium dioxide after annealing at 1000 ◦ C.

micro-discontinuities in the form of thin interlayers, the size of which is several

tens of micrometers in length and 0.3-1.0 µm in thickness. Thin layers are formed

as a result of the spreading of molten particles of the sprayed metal over the

surface. The results of X-ray microspectral analysis show that the formed coating

is characterized by a more uniform distribution of all the chemical elements that

make up the composition.
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Figure 6. SEM-image of the surface (a), cross-section (b) of coatings of zirconium dioxide and the results of micro X-ray
spectral analysis (c).

Conclusion

1. The coatings of zirconium dioxide with a thickness of 360-370 µm was obtained

by the detonation method. It was determined that the coatings have pores and

the average pore size is 5 µm by metallographic analysis method.

2. Electronic microscopic analysis showed that the resulting coatings are

characterized by the presence of high density and uniformity, as well as the

presence of individual pores. Two groups of pores have been identified: round

micro-discontinuities several micrometers in size and micro-discontinuities in

the form of thin interlayers, the size of which is several tens of micrometers in

length and 0.3-1.0 µm in thickness. There is an increase in the number and size

of micro-continuity in the form of thin layers after annealing.

3. X-ray diffraction analysis showed that the phase composition of coatings

before and after annealing consists of t-ZrO 2 . After annealing, there is an increase

in the degree of t-ZrO 2 tetragonality.

4. It was determined that the microhardness of zirconium dioxide coatings

increases by 10-25% depending on the annealing temperature after annealing.

The results of nanoindentation showed that the nanohardness of the coatings

after annealing at 1000 ◦ C increases on 50% and reached to 15.8 GPa.

5. Determined that increase the hardness of zirconium dioxide after annealing

at 900-1100 ◦ C is associated with a higher degree of tetragonality t-ZrO 2 phase.
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