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We demonstrate that the unconventional electron-phonon interactions, charge inhomogeneity and charge
ordering in underdoped cuprates play an important role in metal-insulator transitions and nanoscale
phase separation. In so doing, we argue that charge carriers (i.e. hole polarons) in these systems seg-
regate into insulating (carrier-poor) and metallic/superconducting (carrier-rich) regions as a result of
their specific ordering. We show that the metal-insulator transitions, nanoscale phase separation and
coexisting insulating and metallic/superconducting phases are manifested in the unusual temperature
dependences of the magnetic susceptibility and resistivity and in the suppression of superconductivity
in various underdoped cuprates.
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Introduction

The possible mechanisms of metal-insulator transitions and nanoscale phase
separation in various classes of solids, including the doped copper-oxide (cuprate)
high- Tc superconductors remain still unsolved problems in condensed matter
physics [1-3]. The study of this problem is becoming increasingly important in
connection with the need to solve such very important tasks as the obtaining of
new promising dielectric, metallic and superconducting materials for the devel-
opment of power engineering and microelectronics. Studies of high- Tc cuprate
superconductors have shown that they exhibit various anomalous behaviors and
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their electronic properties vary greatly with the change of the doping [1,3]. In par-
ticular, lightly doped cuprates exhibit unusual dielectric behaviors. With further
increasing the doping level, cuprate compounds become unusual metals whose
behavior is very different from behavior ordinary metals. High- Tc superconduc-
tivity in these materials appears in underdoped and optimally doped regimes.
Namely, underdoped and optimally doped cuprates combine the most interesting
insulating, metallic and SC properties that cannot be explained within the existing
theories of insulators, metals and superconductors based on the standard band
models of Wilson and Mott-Hubbard [1,4] and on the Bardeen-Cooper-Schrieffer
(BCS) model of superconductivity [5]. Many attempts have been made to describe
the unusual electronic properties of high- Tc cuprates within the framework of
various theoretical models. Many of these approaches are based on the Hubbard-
like models and on the so-called t-J models (see Refs.[1,3] for citation of initial
literature sources), which describe strong electron correlations characterizing only
undoped cuprates and ignore the effects of three-dimensionality of high- Tc ma-
terials and the most important electron-phonon interactions (i.e, polaron effects)
inherent in doped polar materials. These approaches often lead to results that
contradict each other, and therefore there are doubts about their adequacy and
applicability even to underdoped cuprates [6]. The observed anomalies in the
electronic properties of underdoped and optimally doped cuprates are believed to
be closely related to the metal-insulator transitions, the phase separation and the
coexistence of metal and insulating phases in these high- Tc materials, where the
metal-insulator transitions are often observed in underdoped and even optimally
doped systems and are characterized by a transition to the insulating behavior
of the resistance at low temperature [7,8]. Metal-insulator transitions in doped
cuprates are also manifested in the temperature dependence of their magnetic
susceptibility χ . As follows from the above, for understanding the new electronic
properties of doped high- Tc materials, it is first of all necessary to clarify the
mechanisms of metal-insulator transitions and phase separation and to determine
the possibility of the coexistence of metallic and insulating phases in underdoped
regimes. So far, the relevant mechanisms of metal-insulator transitions and phase
separation in doped cuprates have not been established exactly. Therefore, the
solution of the problems of metal-insulator transitions and phase separation,
as well as the determination of the nature of different anomalies in magnetic
susceptibility and resistivity of underdoped high- Tc materials, require new theo-
retical approaches going beyond the existing standard theories of insulators and
metals that have proved inadequate for these systems. In the present work we
study the metal-insulator transitions and nanoscale phase separation and their
manifestations in magnetic susceptibility and resistivity of various underdoped
cuprates.
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Relevant charge carriers and their ordering in doped
cuprates

Upon p -type doping (hole doping) of the cuprates, the free holes introduced
into the oxygen valence band interact with lattice vibrations and they become
self-trapped quasiparticles (polarons) in a deformable lattice. A large ionicity of
the cuprates η = ε∞/ε0 << 1 (where ε∞ and ε0 are high-frequency and static
dielectric constants, respectively) enhances the polar electron-phonon interaction
and the tendency to polaron formation [9,10]. Actually, self-trapping of holes
by now has been discovered in different classes of substances (including alkali
halides [11,12] and cuprates [2,13]). Here we notice that the quasi-free electrons
or holes can exist only in ordinary metals, monoatomic semiconductors (e.g. Si
and Ge ) and heavily overdoped cuprates.

Theoretical [9,10,14,15] and experimental [2,13,16] studies show that the charge
carriers in doped cuprates are polarons with effective masses mp ' (2− 3)me
[2,17,18], where me is the free electron mass.

The underdoped cuprates are inhmogeneous systems (where the dopants
and charge carriers are distributed inhomogeneously) and they are more inho-
mogeneous than overdoped cuprates [19]. One can assume that charge carriers
(i.e., hole polarons) in these systems segregate into carrier-rich and carrier-poor
regions as a result of their specific ordering. We argue that the charge ordering
in carrier-poor and carrier-rich domains just like the ordering of atoms in solids,
results in the formation of simple cubic, body-centered cubic and face-centered
cubic superlattices with coordination numbers z = 6, 8 and 12 , respectively, and
the formation of different energy bands of polarons in the charge- transfer (CT)
gap of the cuprates. In carrier-poor regions, a narrow polaronic band is formed
inside the CT gap. In this case the system becomes an insulator where polaronic
carriers become more localized and their hopping conductivity occurs within the
narrow polaronic band. In contrast, the charge transport in sufficiently broadened
polaronic band (i.e. in carrier-rich regions) becomes metal-like.

Metal-insulator transitions and phase separation in un-
derdoped cuprates

As the doping increases towards underdoped region, specific charge ordering
and segregation lead to the formation of dynamic (metallic) and static (insulat-
ing) stripes in carrier-rich and carrier-poor regions, where distinctly different
superlattices of polarons are formed at their inhomogeneous spatial distribution.
When the carrier-poor and carrier-rich regions coexist in underdoped cuprates, an
important question arises: how and at what doping level n = nc the width of the
polaronic band reaches a critical value above which polaron transport becomes
metallic and a doped cuprate material can undergo a phase transition from an
insulator to a metallic state? The criterion for such a metal-insulator transition
can be written in the form [20]
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where a is the lattice constant of large polarons, Rp is the radius of such a
polaron, εF = h̄2(3π2n)2/3/2mp is the Fermi energy of large polarons.

The criterion (1) for a certain level of doping n = nc (where n is the density
of polaronic carriers) can be rewritten as

x = xc =
nc

na
=

1
3π2na

[
4mpEpRp

h̄2a

]3/2

, (2)

where na = 1/Va is the density of the host lattice atoms, Va is the volume per
CuO2 formula unit in the cuprates.

For simple cubic, body-centered cubic and face-centered cubic superlattices of
polarons with z = 6 , z = 8 and z = 12 , the lattice constants of non-overlapping
polarons can be determined as a = 2Rp (for z = 6 ), a = (4/

√
3)Rp (for z = 8 )

and a = 2
√

2Rp (for z = 12 ). The minimum and maximum values of xc
determined from the relation (2) correspond to simple cubic and face-centered
cubic superlattices of polarons. Therefore, applying the criterion (2) for metal-
insulator transitions, in the cases of simple cubic and face-centered cubic polaron
superlattices, we can write

xc1 =
1

3π2h̄3na
[2mpEp]

3/2 (3)

and

xc2 =
1

3π2h̄3na
[
√

2mpEp]
3/2 (4)

Now we estimate xc1 and xc2 for La1−xSrxCuO4 (LSCO) and YBa2Cu3O7−δ

(YBCO) by taking mp = (2.1÷ 2.7)me in LSCO [2,17,18] and mp = (2.0÷ 4.0)me
in YBCO [2,21]. In so doing, we use the theoretical values of Ep ' (0.09÷ 0.106)
eV at ε∞ = 3.5 and η = 0.02÷ 0.10 [20]. The values of Va are determined
approximately as follows. The lattice constants of the orthorhombic LSCO can
be taken approximately a = b ' 5.4 and c ' 13 [22]. Then the volume of the
primitive unit cell of LSCO is about 380 , while the volume per CuO2 formula
unit Va in LSCO is equal to 190 . Further the lattice constants of YBa2Cu3O7−δ

are taken approximately a = b ≈ 4 and c ≈ 12 [22], so that the volume per CuO2
formula unit in YBCO can be taken approximately Va ' 100 . Then, we find
na ' 0.53 · 1022cm−3 (for LSCO) and na ' 1022cm−3 (for YBCO). Using the above
theoretical and experimental values of parameter mp , Ep and na , we obtain the
following values of critical dopings xc1 ' 0.07÷ 0.131 and xc2 ' 0.042÷ 0.078
for LSCO and xc1 ' 0.035÷ 0.125 and xc2 ' 0.021÷ 0.074 for YBCO. We see
that in underdoped LSCO, the metal-insulator transitions and phase separation
into carrier-rich metallic (at x > xc1 and x > xc2 ) regions and carrier-poor
insulating (at x < xc2 and x < xc1 ) regions may occur in the doping range
from x ' 0.042 (lightly doped region) to x & 0.131 (moderately underdoped
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region including also the "magic doping x = 1/8 "), while such metal-insulator
transitions and phase separation in underdoped YBCO would occur in the doping
range from x ' 0.021 to x ' 0.125 . These results are in reasonable agreement
with experimental data on metal-to-insulator crossover and stripe formation in
underdoped cuprates [23-26]. In particular, the above results provide a natural
explanation for the so-called 1/8 anomaly in the underdoped cuprates. According
to our results, the doping level x = 1/8 is of vital importance for various
underdoped cuprates, since the part of dynamic stripes becomes static at x ≤ 1/8
and metallic/superconducting domains begin decreasing just at this doping level.
In the experiment the total resulting effects of the different coexisting (simple-
cubic and face-centered cubic) superlattices of charge carriers are manifested but
the effect of each of these superlattices is not manifested separately.

Possible manifestations of the metal-insulator transi-
tions and phase separation in underdoped cuprates

Attempts to explain the unusual normal-state properties of underdoped
cuprates (in particular, insulator-metal crossover taking place far in the super-
conducting region, the insulating behavior of the c -axis resistivity and the
temperature-dependent magnetic susceptibility in the metallic state) and their
suppressed superconductivity (hiding the normal-state properties) and pseu-
dogap behaviors have led to many controversial assumptions (see, e.g., Refs.
[1,27,28]). Unconventional interactions between quasiparticles in underdoped
cuprates may lead to their new and unidentified electronic states. In reality, the
unconventional electron-phonon coupling and polaronic effects are major factors
influencing the electronic properties (in particular, magnetic susceptibility and
resistivity) of underdoped cuprates.

As is well known, the magnetic susceptibility and electric conductivity in the
normal state of underdoped cuprates are different from the one explained by
the usual band theory. Although, some researchers have started to construct the
theory of the magnetic susceptibility and charge transport in the cuprates [27,29-
32], the magnetic susceptibility and the charge transport in the c -direction have
seldom been investigated. We now discuss the problem of the insulator-to-metal
crossover by studying the doping and temperature dependences of the magnetic
susceptibility and c -axis resistivity of underdoped cuprates. In so doing, we
use the large bipolaron model, the impurity and polaron band models, which
are valid in the bulk. We also use the unusual form of BCS-like pairing theory
of polarons and believe that such a modified BCS-like theory is applicable in
the bulk of the underdoped cuprates. In the following, we study the possible
manifestations of the metal-insulator transitions and coexisting insulating and
metallic/superconducting phases in the temperature dependences of the magnetic
susceptibility χ(T) and the c -axis resistivity ρc(T) of the underdoped cuprates
within the pertinent theoretical approaches taking into account the real physical
situation in these systems. In the lightly doped cuprates ( x . 0.05 ), both defect
centers and polarons (which are products of the thermal dissociation of large
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bipolarons residing between the CuO2 layers) contribute to χ(T) . In this case
the χ(T) can be determined from the relation

χ(T) = χD(T) + χ∗p(T) =
µ2

B
kBT

nD − 2µ2
B

∞∫
0

Dp(ε)
∂ f ∗p
∂ε

dε, (5)

where χD(T) and χ∗p(T) are the contributions to χ(T) coming from defect
centers and polaronic carriers, respectively, f ∗p (ε) = [exp((ε + EbB)/kBT) + 1]−1

is the Fermi distribution function for the polarons produced by thermal disso-
ciation of bipolarons, EbB is the binding energy of a large bipolaron, Dp(ε) =

(
√

2m3/2
p /π2h̄3)

√
ε is the density of states of polarons, µB is the Bohr magneton,

nD is the density of defect centers.
The first term in Eq.(5) is nothing other than the Curie law χD(T) ∼ 1/T for

localized carriers, while contribution of thermally dissociated bipolarons to χ(T)
is

χ∗p(T) =
2
√

2µ2
Bm3/2

p
√

kBT

π2h̄3 × eEbB/kBT
∞∫

0

√
yey

(e(EbB/kBT)ey + 1)2
dy, (6)

where y = ε/kBT .
The variation of χ(T) in the lightly doped cuprate LSCO is shown in Fig.1. As

can be seen by inspection of Fig.1, χ(T) decreases with decreasing temperature,
reaches a minimum, and then increases exhibiting an insulating behavior, in
agreement with experimental χ(T) curve for the lightly doped LSCO ( x = 0.05 )
[33]. In Fig.1, our theoretical curve is a much best fit of the experimental points
and the expression (5) describes fairly well the insulating behavior of the magnetic
susceptibility χ(T) .
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Figure 1. Temperature dependence of χ in the lightly doped cuprate La2−xSrxCuO4 ( x =0.05) with parameters
mp = 4.3me , nD = 0.145 · 1020cm−3 , ρM = 4.2g/cm3 , and EbB = 0.0018 eV. The theoretical results (solid curve) are

compared with experimental data ( � ) [33].

When the density of impurity (dopant) centers and polarons increases, the
impurity and polaronic states form energy bands in which the charge transport
becomes band-like (i.e. metal-like). We argue that Cooper pairing of polarons at
a characteristic temperature T∗ above Tc may occur in a degenerate polaronic
Fermi gas with εF >> kBT , namely, in sufficiently broadened polaronic band
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[34], while the charge carriers in the impurity band (i.e., charge carriers trapped
by impurities) remain unpaired [35].

Therefore, large bipolarons and polaronic Cooper pairs as the bound pairs
of fermions are dissociated into two separate polarons with increasing the tem-
perature. In underdoped and nearly optimally doped cuprates, defect centers,
unpaired charge carriers in the impurity band, thermally dissociated large bipo-
larons and polaronic Cooper pairs contribute to χ(T) . Thus, the expression for
χ(T) in underdoped and nearly optimally doped cuprates can be written as

χ(T) = χD(T) + χI(T) + χ∗p(T) + χC(T), (7)

where

χI(T) = −2µ2
B

∞∫
0

DI(ε)
∂ f I(ε)

∂ε
dε (8)

is the contribution to χ(T) coming from the charge carriers in the impurity
band, DI(ε) = (

√
2m3/2

I /π2h̄3)
√

ε is the density of states in the impurity band,
f I(ε) = [exp((ε− εFI)/kBT) + 1]−1 is the Fermi distribution function for the
carriers in the impurity band (where the energy ε of carriers is measured from
the Fermi energy εFI ) and mI are the mass of carriers in this band,

χC(T) = −2µ2
B

∞∫
0

Dc(ε)
∂ fc(ε)

∂ε
dε (9)

is the contribution to χ(T) coming from the polaronic components of the ther-
mally dissociated Cooper pairs, Dc(ε) = Dp(ε)/2 is the density of states at the
Fermi surface for polarons of one spin orientation introduced in the BCS pairing

theory [3], fc(ε) =
[
exp(

√
ε2 + ∆∗2(T)/kBT) + 1

]−1
is the Fermi distribution

function for the excited polaron components of Cooper pairs, ∆∗(T) is a BCS-like
energy gap (or pseudogap) in the excitation spectrum of polaronic Cooper pairs,
which can be approximated by the following more simple analytical expression

∆∗(T) ' 1.76kBT∗ tanh

[
1.85

√
T∗

T
− 1

]
. (10)

One can assume that the main contribution both to χC(T) and to BCS-like
pairing of polarons below T∗ comes from polaronic carriers whose energy is
close to the Fermi energy εF . Then, Dc(ε) in Eq.(9) can be replaced by Dc(εF) .
As a result, we obtain

χC(T) ' 2µ2
BDc(εF)[1 + exp(∆∗(T)/kBT)]−1 (11)

The final expression for χ(T) is
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χ(T) ' µ2
B

 nD

kBT
+
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√

2m3/2
I

π2h̄3kBT
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εFI

√
ε

e(ε−εFI)/kBT

[e(ε−εFI)/kBT + 1]2
dε+

+
2
√

2m3/2
p

π2h̄3kBT

∞∫
0

√
ε

e(ε+EbB)/kBT

[e(ε+EbB)/kBT + 1]2
dε+

+
2m3/2

p√
2π2h̄3

1
(1 + e∆∗(T)/kBT)

√
εF

}
. (12)

In the normal state of underdoped and optimally doped cuprates, a BCS-like
pseudogap ∆∗(T) is manifested in χ(T) below T∗ as shown in Fig.2 for the
underdoped YBa2Cu3O6+x . At high temperatures T >> T∗ the magnetic sus-
ceptibility of these high- Tc cuprates depends weakly on temperature. According
to (12), χ(T) begins to decrease gradually with lowering the temperature down
to T∗ and then the decrease in χ(T) with lowering T below T∗ becomes more
rapid (see Fig.2) due to the appearance of the pseudogap ∆∗ in the excitation
spectrum of the underdoped YBa2Cu3O6+x for which we took the mass density
ρM = 6.4g/cm3 and molar mass M = 670g/mole [36] in our calculations.
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Figure 2. Comparison of the theoretical results for the magnetic susceptibility of the high- Tc cuprate YBa2Cu3O6+x
(solid curve obtained using the parameters mp = 2.35me , mI = 3.3me , nD = 0.05 · 1019cm−3 , εF =0.127 eV, εFI =0.087

eV, EbB =0.0006 eV) with experimental data for x =0.62 ( • ) [37].

In ordinary metals, χ(T) is temperature independent due to absence of a
polaronic effect. In contrast, a polaronic signature appears in χ(T) both above
T∗ and below T∗ in underdoped cuprtaes where χ(T) first begins to decrease
slowly with lowering the temperature down to T∗ and then the decrease in χ(T)
with lowering T below T∗ becomes more rapid (see Fig.2).

We now consider optimally doped YBCO, where the binding energy EbB of
bipolarons residing between the CuO2 layers becomes vanishingly small and the
temperature T∗ is very close to Tc . Here the defect centers, charge carriers in
the broadened impurity band (where εFI >> kBT ), thermally dissociated large
bipolarons and polaron components of dissociated Cooper pairs contribute to
the magnetic susceptibility of these high- Tc materials and the full expression for
χ(T) can be written as
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χ(T) = χD(T) + χI(T) + χ∗p(T) + χC(T) = µ2
B
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π2h̄3kBT
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εFI +

2
√

2m3/2
p

π2h̄3kBT
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0

√
ε

e(ε+EbB)/kBT

[e(ε+EbB)/kBT + 1]2
dε+

+
2m3/2

p√
2π2h̄3

1
(1 + e∆∗(T)/kBT)

√
εF

}
. (13)

In this case, the magnetic susceptibility χ(T) calculated according to (13) is
weakly temperature-independent (see Fig.3), as observed also experimentally in
the optimally doped YBCO [37]. From the above considerations, it follows that
the coexisting insulating and metallic phases are manifested in the temperature
dependence of the magnetic susceptibility χ of underdoped to optimally doped
cuprates.
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Figure 3.Comparison of the theoretical results for the magnetic susceptibility of the high- Tc cuprate YBa2Cu3O6+x
(solid curve obtained using the parameters mp = 1.7me , mI = 2.7me , nD = 0.01 · 1019cm−3 , εF =0.21 eV, and

εFI =0.148 eV) with experimental data for x =0.97 ( • ) [37].

Further, the analysis of the c -axis charge transport in high- Tc cuprates at
different doping levels may also provide additional information on the insulating
and metallic behaviors of these materials. The transport mechanisms in and out
of plane are actually different. Here we consider specifically 3D polaron transport
at the dissociation of interlayer large bipolarons for studying the problem of
insulator- to-metal crossover in the bulk of the cuprates. We assume that in
doped cuprates the localized large bipolarons are formed in carrier-poor regions
between the CuO2 layers and the c -axis charge transport becomes possible at
the thermal dissociation of these immobile bipolarons into the separate polarons
which subsequently move by hopping along the c -axis. According to Ref.[31],
the c -axis resistivity of the cuprates above Tc can be determined as

ρc(T) = ρ0 +
2kBT

nie2a2
hω0

exp
[

EbB
kBT

]
, (14)

where ρ0 is the residual resistivity, ah is the hopping distance, ω0 is the out-of-
plane optical phonon mode frequency.
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Now, we will compare our predictions with the experimental ρc(T) data for
YBa2Cu3Oy at various doping levels. In so doing,we apply the model based
on the hopping conduction of polarons at thermally activated dissociation of
localized bipolarons residing between the CuO2 layers to the c -axis charge
transport observed in YBa2Cu3Oy . Comparison of our results with experimental
ρc(T) data for various samples of YBa2Cu3Oy with different doping levels is
shown in Fig.4. One can see that the calculated results for ρc(T) agree very well
with the experimental ρc(T) data down to Tc . As can be seen by inspection of
Fig.4, the insulating behavior of ρc(T) in underdoped YBa2Cu3Oy is charged
gradually to the metallic behavior with decreasing EbB in optimally doped
regime, as shown in Fig.4.
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Figure 4. The experimental ρc(T) data (dotted square) obtained for YBa2Cu3Oy at various doping levels [38] and the
respective fits using Eq.14 (solid lines). Fits to the experimental ρc(T) data for YBa2Cu3Oy with y = 6.7, 6.8 and 6.9

are performed using Eq.14 and different fitting parameters (i.e., the following fitting parameters ρ0 = 0.05mΩcm ,
ah = 11.5 · 10−8cm , ω0 = 5.8 · 1013s−1 , ni = 1.77 · 1019cm−3 , EbB = 0.0215 eV; ρ0 = 0.03mΩcm , ah = 11.5 · 10−8cm ,

ω0 = 6.0 · 1013s−1 , ni = 2.0 · 1019cm−3 , EbB = 0.0135 eV and ρ0 = 0.02mΩcm , ah = 11.5 · 10−8cm ,
ω0 = 17.0 · 1013s−1 , ni = 7.35 · 1019cm−3 , EbB = 0.005 eV are used for y = 6.7, 6.8 and 6.9, respectively.

Conclusion

We have studied the metal-insulator transitions and nanoscale phase sepa-
ration and their possible manifestations in various unusual behaviors of under-
doped high- Tc cuprates. We argued that charge carriers introduced into cuprates
by hole doping become polaronic quasiparticles and segregate into insulating
(carrier-poor) and metallic/superconducting (carrier-rich) regions as a result of
their specific ordering. Our results show that the insulating and metallic phases
coexist first in the lightly doped cuprates ( x ' 0.02− 0.05 ) and then the co-
existence of the competing insulating, metallic and superconducting phases is
expected in underdoped cuprates ( x ' 0.05− 0.13 ). The competition between
coexisting insulating and metallic/superconducting phases rules the behavior
of these materials. We demonstrated that the metal-insulator transitions and
nanoscale phase separation are manifested in the unusual temperature-dependent
behaviors of the magnetic susceptibility and resistivity and in the suppression
of the critical superconducting transition temperature in various underdoped
cuprates.



229 Eurasian Journal of Physics and Functional Materials, Vol.2(3)

Acknowledgments

We thank E.M. Ibragimova, P.J. Baimatov and E.X. Karimbaev for useful
discussions. This work was supported by the Foundation of Uzbekistan Academy
of Sciences, grant No. OT- Φ 2-15.

References

[1] M. Imada et al., Rev. Mod. Phys. 70 (1998) 1039 .
[2] M.A. Kastner et al., Rev. Mod. Phys. 70 (1998) 897.
[3] S. Dzhumanov, Theory of Conventional and Unconventional
Superconductivity in the High- Tc Cuprates and Other Systems (Nova Science
Publishers, New York, 2013).
[4] F. Walz, J. Phys.: Condens. Matter 14 (2002) R285.
[5] J. Bardeen et al., Phys. Rev. 108 (1957) 1175.
[6] V.I. Belyavsky et al., UFN 175 (2005) 191.
[7] S. Ono et al., Physica C 357?60 (2001) 138.
[8] G.S. Boebinger et al., Phys. Rev. Lett. 77 (1996) 5417.
[9] D. Emin, M.S. Hillery, Phys. Rev. B 39 (1989) 6575.
[10] J.T. Devrees, A.S. Alexandrov, Rep. Prog. Phys. 72 (2009) 066501.
[11] Ch.B. Lushchik, A. Ch. Lushchik, Decay of electronic excitations with defect
formation in solids (Nauka, Moscow, 1989).
[12] S. Dzhumanov, P.K. Khabibullaev, Phys. Stat. Sol. B 152 (1989) 395.
[13] S. Sugai, Physica C 185-189 (1991) 76.
[14] G. Verbist et al., Phys. Scripta T 39 (1991) 66.
[15] S. Dzhumanov et al., Physica C 254 (1995) 311.
[16] X.X. Bi, P.C. Eklund, Phys. Rev. Lett. 70 (1993) 2625.
[17] A. Ino et al., Phys. Rev. B 65 (2002) 094504.
[18] D.N. Basov, T. Timusk, Rev. Mod. Phys. 77 (2005) 721.
[19] T. Kato et al., Physica C 460-462 (2007) 880.
[20] S. Dzhumanov et al., J. Phys. Chem. Solids 73 (2012) 484.
[21] A.V. Puchkov et al., J. Phys:Condens. Matter 8 (1996) 10049.
[22] Yu.A. Izyumov et al., Usp. Fiz. Nauk. 159 (1989) 621.
[23] Sh. Sakita et al., J. Phys. Soc. Jpn. 68 (1999) 2755.
[24] Y. Koike et al., Physica C 357-360 (2001) 82.
[25] J. Fink et al., Physica C 185-189 (1991) 45.
[26] S. Ono et al., Physica C 357-360 (2001) 138.
[27] A.A. Abrikosov, Phys. Usp. 41 (1998) 605.
[28] S.I. Vedeneev, Phys. Usp. 182 (2003) 669.
[29] D. Pines, Tr. J. Phys. 20 (1996) 535.
[30] B.P. Stojkovic, D. Pines, Phys. Rev. B55 (1997) 8576.
[31] S. Dzhumanov et al., Physica B 440 (2014) 17.
[32] P.W. Anderson, The theory of superconductivity in the high- Tc cuprates
(Prinston Univ. Press, Prinston, 1997).
[33] T. Nakano et al., Phys. Rev. B 49 (1994) 16000.



Eurasian Journal of Physics and Functional Materials, Vol.2(3) 230

[34] S. Dzhumanov et al., Phys. Lett. A 380 (2016) 2173.
[35] S. Dzhumanov, E.K. Karimbaev, Physica A 406 (2014) 176.
[36] M. Roulin et al., In Physics and Materials Science of Vortex States, Flux
Pinning and Dynamics, Edited by: R. Kossowsky, S. Bose, Z. Durusoy, V. Pan
(Springer, New York, 1999) 489.
[37] J.W. Loram et al., Physica C 235-240 (1994) 134.
[38] S. Tajima et al., Phys. Rev. B 55 (1997) 6051.


