Preview

Effect of lithium doping on electrophysical and diffusion properties of nonstoichiometric superionic copper selenide Cu1.75Se

https://doi.org/10.29317/ejpfm.2017010203

Abstract

The results of studies of the ionic conductivity and the conjugated chemical diffusion coefficients (CCDC) in the nonstoichiometric LixCu1.75Se(0 ≤ x ≤ 0.25) ternary alloys are presented. It has been observed that the values of the ionic conductivity of Cu1.75Se copper selenide decreases with lithium doping in general owing to increasing the the activation energy. The increasing of the conjugate chemical diffusion coefficients of the cations and electron holes was observed with increasing of lithium content, despite the decreasing of self-diffusion coefficients of the cations and decreasing of electron mobilities. The behavior of the conjugate chemical diffusion coefficients explained by a decrease in the degree of non-stoichiometry of the composition, leading to an increase of the internal electric field accelerating the motion of slower particles.

About the Authors

M. Kh. Balapanov
Bashkir State University
Russian Federation


K. A. Kuterbekov
L.N. Gumilyov Eurasian National University
Kazakhstan


M. M. Kubenova
L.N. Gumilyov Eurasian National University
Kazakhstan


R. Kh. Ishembetov
Bashkir State University
Russian Federation


B. M. Akhmetgaliev
Bashkir State University
Russian Federation


R. A. Yakshibaev
Bashkir State University
Russian Federation


References

1. L.D. Yushina. Solid state chemotronics (Ekaterinburg: Ural Department of Russian Academy of Sciences, 2003) 204 p.

2. M.Kh. Balapanov et al., Phys. Sol. Stat 48 (2006) 1868.

3. A. Casu et al., ACS Nano 10 (2016) 2406.

4. M.C. Nguyen et al., Phys. Rev. Lett. 111 (2013) 165502.

5. K. Tyagi et al., J. Phys. Chem. Sol. 81 (2015) 100.

6. L. Yang et al., Acta Mater. 81 (2015) 100.

7. K. Tyagi et al., J. Phys. Chem. Sol. 210 (2016) 655.

8. A. Qurashi, Metal Chalcogenide Nanostructures for Renewable Energy Applications (Scrivener Publishing and John Wiley & Sons, Beverly, 2015)320 p.

9. W. Zhang et al., Adv. Funct. Mater. 19 (2009) 1759.

10. D. Dorfs et al., J. Am. Chem. Soc. 133 (2011) 11175.

11. I. Kriegel et al., J. Am. Chem. Soc. 134 (2012) 1583.

12. H. Zhang et al., Nano Energy 23 (2016) 60.

13. C. M. Hessel et al., Nano Lett. 11 (2001) 2560.

14. X. Liu et al., Adv. Health. Mat. 2 (2013) 952.

15. M. Horvatic and Z. Vucic, Sol. St. Ion. 61 (1984) 117.

16. M.A. Korzhuev et al., Semiconductors. 23 (1989) 959.

17. R.A. Yakshibaev et al., Sov. Phys. Sol. Stat.26 (1984) 2189.

18. N.Kh. Abrikosov et al., Poluprovodnikovye khal’kogenidy i splavy na ikh osnove (Moscow: Nauka, 1975) 220 p.

19. N. Frangis et al., phys. stat. sol. (a)126 (1991) 9.

20. H. Kim et al., Acta Mater. 86 (2015) 247.

21. V.V. Gorbachev, Poluprovodnikovye soedineniya A2iB4 (Metallurgiya, Moskva, 1980) 132 s.

22. F. El. Akkad et al., Mat. Res. Bull. 16 (1981) 535.

23. V.N. Konev et al., Izvestiya academii nauk USSR. Neorganicheskie materialy. 19 (1983) 1066.

24. D. R. Brown et al., J. electr. mater. 42 (2013) 2014.

25. M.A. Korzhuev and A.V. Laptev, J. Tech. Phys. 59 (1989) 62.

26. M.A. Korzhuev, J. Tech. Phys. 68 (1998) 67.

27. H. Liu et al., Nat. Mater. 11 (2012) 422.

28. G. Slack, Handbook of Thermoelectricity (CRC Press, Boca Raton, 1995) 720 p.

29. P. Qiu et al., En. Stor. Mat. 3 (2016) 85.

30. B. Gahtoriet et al., Nano Energy 13 (2015) 36.

31. G. Dennler et al., Adv. Energy Mater. 4 (2014) 1301581.

32. M.K. Balapanov et al., Ionics 5 (1999) 20.

33. M. Kh. Balapanov et al., Phys. Stat. Sol.(b) 241 (2004) 3517.

34. M.K. Balapanov et al., Rus. J. Electrochem. 43 (2007) 585.

35. R. Kh. Ishembetov et al., Perspectivnye materiali N12 (2011) 55.

36. M. Kh. Balapanov et al., Bulletin of Bashkir University 22 ( 2017) 41.

37. S.D. Kang et al., Mat. Today Phys. 1 (2017) 7.

38. I. Iokota , J. Phys. Soc. Jap. 16 (1961) 2213.

39. S. Miyatani, J. Phys. Soc. Jap. 34 (1973) 422.

40. M. Kh. Balapanov, Rus. J. Electrochem. 43 (2007) 590.

41. M. Kh. Balapanov et al., Ionics 12 (2006) 205.

42. P.T. Cunningham et al., J. Electrochem. Soc. 118 (1971) 1941.

43. V. N. Chebotin, Khimicheskaya diffusiya v tverdykh telakh. (Nauka, Moskva, 1989) 208 s.

44. V.M. Berezin and G.P. Vyatkin, Superionnye poluprovodnikovye khal’kogenidy (Yuzh-no-Ural. Gos. Univ., Chelyabinsk, 2001) 135 s.

45. M. Kh. Balapanov et al., Russ. J. Electrochem. 47 (2011) 1337.

46. V.A. Terekhov et al., Sov. Phys. Sol. Stat. 25 (1983) 2482.

47. M.A. Korzhuev, Sov. Phys. Sol. Stat. 35 (1993) 3043.


Review

For citations:


Balapanov M.Kh., Kuterbekov K.A., Kubenova M.M., Ishembetov R.Kh., Akhmetgaliev B.M., Yakshibaev R.A. Effect of lithium doping on electrophysical and diffusion properties of nonstoichiometric superionic copper selenide Cu1.75Se. Eurasian Journal of Physics and Functional Materials. 2017;1(2):40-49. https://doi.org/10.29317/ejpfm.2017010203

Views: 374


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2522-9869 (Print)
ISSN 2616-8537 (Online)