Preview

Eurasian Journal of Physics and Functional Materials

Advanced search

Study of gamma radiation shielding efficiency by 0.5TeO2-(0.5-x)Bi2O3-xWO3 glasses

https://doi.org/10.32523/ejpfm.2021050205

Abstract

This article is devoted to the study of determination of gamma radiation shielding efficiency by new radiation-resistant glasses of the 0.5TeO2-(0.5-x)Bi2O3-xWO3 type. Asa method of obtaining glasses, the method of solid-phase synthesis combined with thermal annealing and subsequent hardening was used. The amorphous nature of the synthesized samples was confirmed by X-ray phase analysis. Determination of the shielding ef ficiency, as well as the effect of Bi2O3 and WO3 content in the glass composition on the attenuation efficiency was carried out by evaluation of gamma radiation intensi 137Cs ties from the source, with a gamma ray energy of 661 keV. The evaluation was performed on parameters such as radiation protection efficiency, linear and mass attenuation coefficients, half-value layer and mean free path. During the studies, it was found that glasses of the following composition 0.5TeO2-0.1Bi2O3-0.4WO3 are most effective, which are 1.3-2 times higher than those of the composition 0.5TeO2-0.4Bi2O3-0.1WO3.

About the Authors

A. .. Temir
The Institute of Nuclear Physics; L.N. Gumilyov Eurasian National University
Kazakhstan


K. Sh. Zhumadilov
L.N. Gumilyov Eurasian National University
Kazakhstan


A. .. Kozlovskiy
The Institute of Nuclear Physics; L.N. Gumilyov Eurasian National University
Kazakhstan


A. .. Smagulova
L.N. Gumilyov Eurasian National University
Kazakhstan


D. I. Shlimas
The Institute of Nuclear Physics; L.N. Gumilyov Eurasian National University
Kazakhstan


A. V. Trukhanov
Scientific-Practical Materials Research Centre of National Academy of Sciences of Belarus; South Ural State University; Chelyabinsk, Russia
Belarus


References

1. E. Schmid et al., Journal of Radiological Protection 32(3) (2012) N129.

2. Yue Kun et al., Radiation protection dosimetry 133(4) (2009) 256-260.

3. N.J. AbuAlRoos et al., Radiation Physics and Chemistry 165 (2019) 108439.

4. H.M. Soylu et al., Journal of Radioanalytical and Nuclear Chemistry 305(2) (2015) 529-534.

5. M. Alwaeli, Journal of Cleaner Production 166 (2017) 157-162.

6. H. Algarni et al., Science of Advanced Materials 10(6) (2018) 818-826.

7. M.E. Camilo et al., Thin solid films 571 (2014) 225-229.

8. M.Y. Hassaan et al., Journal of Materials and Applications 9(1) (2020) 46-54.

9. Al-Buriahi et al., Radiation Physics and Chemistry 166 (2020) 108507.

10. Tonguc Baris T. et al., Radiation Physics and Chemistry 153 (2018) 86-91.

11. Al-Buriahi et al., Indian Journal of Pure & Applied Physics (IJPAP) 57(6) (2019) 433-437.

12. Al-Buriahi et al., Journal of the Australian Ceramic Society 56(3) (2020) 1127-1133.

13. G. Lakshminarayana et al., Applied Physics A 126(3) (2020) 1-18.

14. M.S. Al-Buriahi et al., Ceramics International 46(10) (2020) 15464-15472.

15. M.S. Al-Buriahi et al., Materials Research Express 7(2) (2020) 025202.

16. M.S. Al-Buriahi and Y.S. Rammah, Radiation Physics and Chemistry 170 (2020) 108632.

17. A. Temir et al., Solid State Sciences (2021) 106604.

18. A.L. Kozlovskiy and M.V. Zdorovets, Materials Chemistry and Physics 263 (2021) 124444.

19. S. Stalin et al., Ceramics International 47(4) (2021) 5286-5299.

20. T.N. Nurakhmetov et al., Eurasian Journal of Physics and Functional Materials 5(1) (2021) 24-30.

21. L. Aleksandrov et al., Journal of Chemical Technology and Metallurgy 50(4) (2015) 429-434.

22. D.N. Kakimzhanov et al., Eurasian Journal of Physics and Functional Materials 5(1) (2021) 45-51.

23. M. Celikbilek et al., Journal of non-crystalline solids 378 (2013) 247-253.

24. A.S. Rysbaev et al., Eurasian Journal of Physics and Functional Materials 4(1)(2020) 50-60.

25. A. Temir et al., Optical Materials 115 (2021) 111037.

26. M.I. Sayyed, Canadian journal of physics 94(11) (2016) 1133-1137.

27. H.O. Tekin et al., Radiation Physics and Chemistry 150 (2018) 95-100.

28. G. Pal Singh and D.P. Singh, Canadian Journal of Physics 89(12) (2011) 1281-1285.

29. A. Temir et al., Optical Materials 113 (2021) 110846.

30. D.K. Gaikwad et al., Materials Chemistry and Physics 213 (2018) 508-517.


Review

For citations:


Temir A..., Zhumadilov K.Sh., Kozlovskiy A..., Smagulova A..., Shlimas D.I., Trukhanov A.V. Study of gamma radiation shielding efficiency by 0.5TeO2-(0.5-x)Bi2O3-xWO3 glasses. Eurasian Journal of Physics and Functional Materials. 2021;5(2):126-132. https://doi.org/10.32523/ejpfm.2021050205

Views: 402


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2522-9869 (Print)
ISSN 2616-8537 (Online)