Preview

Eurasian Journal of Physics and Functional Materials

Advanced search

Influence of plasma electrolytic hardening modes on the structure and properties of 65G steel

https://doi.org/10.32523/ejpfm.2021050306

Full Text:

Abstract

This work presented a study of the structure, hardness and wear resistance of 65G steel treated with electrolyte-plasma hardening under different conditions. The electrolyte-plasma hardening technology and a laboratoryinstallation for the realisation of electrolyte-plasma hardening are also described. After electrolyte-plasmahardening,wehave established thata modifiedlayer consistsofthe a-phase (martensite) and M3C cementite. The study results showed that electrolyte-plasma hardening makes it possible to obtainlayersonthe65G steel surface thatprovidesan increasein microhardnessby2.6 times,wear resistanceby two times,resistance to abrasivewearby1.7 times compared to the original samples. In addition, local hardening ensures the achievement of technical and economic effects due to the absence of the need to isolate an unwanted site of parts, processing only the areas requiring hardening.

About the Authors

B. K. Rakhadilov
Amanzholov University; PlasmaScience LLP
Kazakhstan


R. S. Kozhanova
PlasmaScience LLP
Kazakhstan


D. .. Baizhan
Amanzholov University; Institute for Composite Materials
Kazakhstan


L. G. Zhurerova
Amanzholov University
Kazakhstan


G. U. Yerbolatova
Daulet Serikbaev East Kazakhstan Technical University
Kazakhstan


A. A. Kalitova
Institute for Composite Materials
Kazakhstan


L. N. Zhanuzakova
Daulet Serikbaev East Kazakhstan Technical University
Kazakhstan


References

1. F. Yulei et al., Nuclear Instruments and Methods in Physics Research B 410 (2017) 207-214.

2. L. Wang et al., Materials Science and Engineering A 359 (2003) 31-43.

3. B.V. Vladimirov et al., Surf. Eng. Appl. Electrochem. 50(3) (2014) 1-38.

4. E.I. Meletis et al., Surf. Coat. Technol. 150 (2002) 246-256.

5. S. Mazhyn et al., Advanced Materials Research 1040 (2014) 753-758.

6. M. Tarakci et al., Surf. Coat. Technol. 199(2-3) (2005) 205-212.

7. S.A. Kusmanov et al., Surf. Coat. Technol. 258 (2014) 727-733.

8. P. Taheri et al., Plasma Process. Polym. 4 (2007) 711-716.

9. L.G. Zhurerova et al., Journal of Materials Research and Technology 9(1) (2020) 78-85.

10. P. Taheri et al., Plasma Process. Polym. 4 (2007) 721-727.

11. B.K. Rakhadilov et al., IOP Conf. Series: Mat. Science and Engineering 142 (2016) 1-7.

12. B.K. Rakhadilov et al., Journal of Materials Research and Technology 9(4) (2020) 6969-6976.

13. H. Zhang et al., Surface Engineering 19(2) (2003) 134-136.

14. I.V. Suminov et al., M: Technosphere 1 (2011) 464.

15. GOST (State Standard) 9450-76: Measurements microhardness by diamond instruments indentation (Moscow: Izd. Standartov, 1976) 34 p. (in Russian)

16. W.C. Oliver et al., Journal of Materials Research 7(6) (1992) 1564-1583.

17. V.K. Grigorevich, Hardness and microhardness of metals (Nauka, Moscow, 1976) 230 p.

18. O.I. Khomutov et al., Polzunovsky Almanac 1-2 (2001) 10-19.

19. V.A. Lobodyuk et al., Metallurgical and Materials Transactions A 50 (2019) 97-103.

20. Yu.P. Raizer et al., Advances in physical sciences 108(3) (1972) 429-461.

21. B.R. Lazarenko et al., Electronic processing of materials 2 (1980) 50-55.

22. J. Huang et al., Surface and Coatings Technology 347 (2018) 76-83.


Review

For citations:


Rakhadilov B.K., Kozhanova R.S., Baizhan D..., Zhurerova L.G., Yerbolatova G.U., Kalitova A.A., Zhanuzakova L.N. Influence of plasma electrolytic hardening modes on the structure and properties of 65G steel. Eurasian Journal of Physics and Functional Materials. 2021;5(3):209-221. https://doi.org/10.32523/ejpfm.2021050306

Views: 128


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2522-9869 (Print)
ISSN 2616-8537 (Online)