Preview

Eurasian Journal of Physics and Functional Materials

Advanced search

Analysis of the beryllium stability under standard and critical operation in a fusion reactor

https://doi.org/10.32523/ejpfm.2021050403

Full Text:

Abstract

The paper provides data on the peculiarity of change in the structure, structural phase changes and destructions in beryllium resulting from interaction with a near-wall plasma of fusion facilities. Beryllium resistance under conditions of ITER operation was evaluated, which considers factors leading to possible partial melting and erosion of panels of the ITER first wall. It presents the modelling of a heat s distribution in element (”finger”) of the first wall at ”normal” and ”increased” heat flux of the ITER operation.

About the Authors

I. A. Sokolov
Institute of Atomic Energy Branch RSE NNC RK
Kazakhstan

Kurchatov



M. K. Skakov
National Nuclear Center of the Republic of Kazakhstan
Kazakhstan

Kurchatov



A. Zh. Miniyazov
Institute of Atomic Energy Branch RSE NNC RK
Kazakhstan

Kurchatov



B. T. Aubakirov
Institute of Atomic Energy Branch RSE NNC RK
Kazakhstan

Kurchatov



T. R. Tulenbergenov
Institute of Atomic Energy Branch RSE NNC RK
Kazakhstan

Kurchatov



A. V. Gradoboev
Tomsk Polytechnic University
Russian Federation

Tomsk



References

1. A.R. Raffray et al., Nuclear Fusion 54 (3) (2014).

2. V. Barabash et al., Physica Scripta 145 (2011) 014007.

3. Available online: http://www.ulba.kz/ru/production2 _06 .htm (accessed on 21 August 2021).

4. A. Kallenbach et al., Plasma Physics and Controlled Fusion 47 (2005) B207-B222.

5. R. Mitteau et al., Fusion Engineering and Design 88 (2013) 568-570.

6. A. Volodin et al., Fusion Engineering and Design 98-99 (2015) 1411-1414.

7. G. Pintsuk et al., Nuclear Materials and Energy 9 (2016) 41-45.

8. B. Spilker et al., Nuclear Materials and Energy 18 (2019) 291-296.

9. I. Kenzhina et al., Journal of Nuclear Science and Technology 58(1) (2020) 1-8.

10. Available online: https://www.iter.org/ (accessed on 21 August 2021).

11. ITER Technical Basis, IITER EDA DOCUMENTATION SERIES No. 24 (International Atomic Energy Agency, Vienna, 2001).

12. H. Bolt et al., Journal of Nuclear Materials 329-333(1) (2004) 66-73.

13. M. Merola et al., Fusion Engineering and Design 96-97 (2015) 34-41.

14. F. Kong et al., Nuclear Instruments and Methods in Physics Research 406 (2017) 643-647.

15. R.K. Janev et al., Atomic and plasma-material interaction data for fusion (International Atomic Energy Agency, Vienna, 1994) 103-117.

16. ITER Physics Expert Group on Confinement and Transport et al., Nuclear Fusion 39(12) (1999) 2175-2249.

17. R. Mitteau et al., Nuclear Materials and Energy 12 (2017) 1067-1070.

18. JET Team, Nuclear Fusion 32 (1992) 187-203.

19. Y. Corre et al., Journal of Nuclear Materials 463 (2015) 832-836.

20. T. Cicero et al., Fusion Engineering Design 98-99 (2015) 1256-1262.

21. Available online: www.autodesk.com/campaigns/cfd2020 (accessed on 21 August 2021).

22. M.A. Mikheev, I.M. Mikheeva, Fundamentals of heat transfer (Energia, Moscow, 1977) 342 p. (In Russian)


Review

For citations:


Sokolov I.A., Skakov M.K., Miniyazov A.Z., Aubakirov B.T., Tulenbergenov T.R., Gradoboev A.V. Analysis of the beryllium stability under standard and critical operation in a fusion reactor. Eurasian Journal of Physics and Functional Materials. 2021;5(4):188-197. https://doi.org/10.32523/ejpfm.2021050403

Views: 1788


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2522-9869 (Print)
ISSN 2616-8537 (Online)