Analysis of the beryllium stability under standard and critical operation in a fusion reactor
Abstract
The paper provides data on the peculiarity of change in the structure, structural phase changes and destructions in beryllium resulting from interaction with a near-wall plasma of fusion facilities. Beryllium resistance under conditions of ITER operation was evaluated, which considers factors leading to possible partial melting and erosion of panels of the ITER first wall. It presents the modelling of a heat s distribution in element (”finger”) of the first wall at ”normal” and ”increased” heat flux of the ITER operation.
About the Authors
I. A. SokolovKazakhstan
Kurchatov
M. K. Skakov
Kazakhstan
Kurchatov
A. Zh. Miniyazov
Kazakhstan
Kurchatov
B. T. Aubakirov
Kazakhstan
Kurchatov
T. R. Tulenbergenov
Kazakhstan
Kurchatov
A. V. Gradoboev
Russian Federation
Tomsk
References
1. A.R. Raffray et al., Nuclear Fusion 54 (3) (2014).
2. V. Barabash et al., Physica Scripta 145 (2011) 014007.
3. Available online: http://www.ulba.kz/ru/production2 _06 .htm (accessed on 21 August 2021).
4. A. Kallenbach et al., Plasma Physics and Controlled Fusion 47 (2005) B207-B222.
5. R. Mitteau et al., Fusion Engineering and Design 88 (2013) 568-570.
6. A. Volodin et al., Fusion Engineering and Design 98-99 (2015) 1411-1414.
7. G. Pintsuk et al., Nuclear Materials and Energy 9 (2016) 41-45.
8. B. Spilker et al., Nuclear Materials and Energy 18 (2019) 291-296.
9. I. Kenzhina et al., Journal of Nuclear Science and Technology 58(1) (2020) 1-8.
10. Available online: https://www.iter.org/ (accessed on 21 August 2021).
11. ITER Technical Basis, IITER EDA DOCUMENTATION SERIES No. 24 (International Atomic Energy Agency, Vienna, 2001).
12. H. Bolt et al., Journal of Nuclear Materials 329-333(1) (2004) 66-73.
13. M. Merola et al., Fusion Engineering and Design 96-97 (2015) 34-41.
14. F. Kong et al., Nuclear Instruments and Methods in Physics Research 406 (2017) 643-647.
15. R.K. Janev et al., Atomic and plasma-material interaction data for fusion (International Atomic Energy Agency, Vienna, 1994) 103-117.
16. ITER Physics Expert Group on Confinement and Transport et al., Nuclear Fusion 39(12) (1999) 2175-2249.
17. R. Mitteau et al., Nuclear Materials and Energy 12 (2017) 1067-1070.
18. JET Team, Nuclear Fusion 32 (1992) 187-203.
19. Y. Corre et al., Journal of Nuclear Materials 463 (2015) 832-836.
20. T. Cicero et al., Fusion Engineering Design 98-99 (2015) 1256-1262.
21. Available online: www.autodesk.com/campaigns/cfd2020 (accessed on 21 August 2021).
22. M.A. Mikheev, I.M. Mikheeva, Fundamentals of heat transfer (Energia, Moscow, 1977) 342 p. (In Russian)
Review
For citations:
Sokolov I.A., Skakov M.K., Miniyazov A.Z., Aubakirov B.T., Tulenbergenov T.R., Gradoboev A.V. Analysis of the beryllium stability under standard and critical operation in a fusion reactor. Eurasian Journal of Physics and Functional Materials. 2021;5(4):188-197. https://doi.org/10.32523/ejpfm.2021050403