Preview

Eurasian Journal of Physics and Functional Materials

Advanced search

The features of deformation-stimulated RbI luminescence

https://doi.org/10.32523/ejpfm.2021050406

Full Text:

Abstract

This paper studies deformation-stimulated features of radiative relaxation of self-trapped excitons and recombination assembly of exciton-like luminescence in RbI crystal. Methods of research were luminescence and thermal activation spectroscopy. The identity of the mechanism of manifestation of the X-ray luminescence, tunnel luminescence and thermally stimulated luminescence spectra were found in the elastically deformed RbI crystal, interpreted by the luminescence of self-trapped exciton, tunnel recharge of F′, VK -pairs and thermally stimulated recombination of e, VK -centres, respectively.
The temperatures of the maximum destruction peaks of thermally stimulated luminescence, their spectral composition and activation energies were determined experimentally, on the basis of which the mechanisms of recombination assembly of exciton-like luminescences in a RbI crystal were interpreted. Uniaxial elastic deformation leads to the effective formation of point radiation defects ( F′, HA, VK -centers) in comparison with an unbroken lattice, where the predominant mechanism is the association of interstitial atoms ( H -centres) with the formation of I3-centres.

About the Authors

L. N. Myasnikova
K. Zhubanov Aktobe Regional University
Kazakhstan

Aktobe



A. G. Maratova
K. Zhubanov Aktobe Regional University
Kazakhstan

Aktobe



K. Sh. Shunkeyev
K. Zhubanov Aktobe Regional University
Kazakhstan

Aktobe



References

1. S. Song and R.T. Williams, Self-Trapped Excitons: 2nd edition (Springer, Berlin, 2013) 410 p.

2. C.B. Lushchik, A.C. Lushchik, Decay of Electronic Excitations with Defect Formation in Solids (Nauka, Moscow, 1989) 262 p. (In Russian)

3. Ch. Lushchik et al., Physics of the Solid State 60 (2018) 1487-1505.

4. A. Elango et al., Radiation Measurements 33 (2001) 823-827.

5. K. Shunkeyev et al., Eurasian j. phys. funct. mater. 2(3) (2018) 267-273.

6. L. Myasnikova et al., Nucl. Instrum. Meth. B 464 (2020) 95-99.

7. V. Babin et al., J. Phys. Condensed Matter 11 (1999) 2303-2317.

8. H. Nishimura et al., J. Lumin. 58 (1994) 347-349.

9. H. Nishimura et al., J. Lumin. 62 (1994) 41-47.

10. M. Kobayashi et al., J. Lumin. 48–49 (1991) 98-102.

11. K. Shunkeyev et al., J. Phys. Conf. Ser. 830 (2017) 012139.

12. V. Babin et al., J. Lumin. 81 (1999) 71-77.

13. E. Vasilchenko et al., Phys. Status Solidi (b) 174 (1992) 155-163.

14. V. Babin et al., J. Lumin. 76-77 (1998) 502-506.

15. K. Shunkeyev et al., Low Temp. Phys. 42(7) (2016) 580-583.

16. K. Shunkeyev et al., Low Temp. Phys. 45(10) (2019) 1127-1130.

17. I. Kaplunov et al., Opt. Spectrosc. 128(10) (2020) 1583-1587.

18. I. Kaplunov et al., J. Phys. Conf. Ser. 1697(1) (2020) 012253.

19. K. Shunkeyev et al., J. Phys. Conf. Ser. 400 (2012) 052032.

20. A. Lushchik et al., Surf. Rev. Lett. 9 (2002) 299-303.

21. T. Yoshinari et al., J. Phys. Soc. Jpn. 39 (1975) 1498-1505.

22. K. Tanimuraetal., J. Phys. Soc. Jpn. 61 (1992) 1366-1379.

23. E.A. Vasil’chenko et al., Fizika Tverdogo Tela 28 (1986) 1991-1997. (In Russian)

24. M. Ikezawa et al., J. Phys. Soc. Japan 27 (1969) 1551-1563.

25. A. Elango et al., Phys. Status Solidi (b) 78(2) (1976) 529-536.

26. R. Chen, J. Applied Physics 40(2) (1969) 570-585.

27. M. Balarin, Physics Letters 64A(5) (1978) 435-438.

28. A. Delunas et al., J. Lumin. 29 (1984) 187-197.

29. R.K. Gartia et al., J. Phys. D: Appl. Phys. 26 (1993) 858-861.


Review

For citations:


Myasnikova L.N., Maratova A.G., Shunkeyev K.S. The features of deformation-stimulated RbI luminescence. Eurasian Journal of Physics and Functional Materials. 2021;5(4):218-228. https://doi.org/10.32523/ejpfm.2021050406

Views: 289


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2522-9869 (Print)
ISSN 2616-8537 (Online)