Magnetic anisotropy and stability of Fe3Ga compounds
Abstract
The magnetic anisotropy energy and the stability of crystal modifications of D03 and L21 of Fe3Ga compounds are studied with the density functional theory methods. The magnetic anisotropy energy of the D03 structure is more than twice the same value for the L21 structure. The features in the electronic structure lead to the difference in the magnitude of spin-orbit interaction, explaining the found effect. The L21 structure is more thermodynamically stable in the entire range of the considered pressures. Under pressure, the considered crystal modifications of Fe3Ga lose their stability due to the appearance of imaginary frequencies in their phonon spectra.
About the Authors
T. M. InerbaevKazakhstan
Nur-Sultan
A. U. Abuova
Kazakhstan
Nur-Sultan
A. K. Dauletbekova
Kazakhstan
Nur-Sultan
F. U. Abuova
Kazakhstan
Nur-Sultan
G. A. Kaptagay
Kazakhstan
Almaty
Zh. Zakieva
Kazakhstan
Nur-Sultan
M. Eltizarova
Kazakhstan
Nur-Sultan
A. Barakov
Kazakhstan
Almaty
References
1. G. Engdahl, Handbook of giant magnetostrictive materials: A volume in Electromagnetism (Academic, San Diego, 2000).
2. E. du Tremolet de Lacheisserie et al., Magnetism (Springer-Verlag, New York, 2005) 517 p.
3. F. Jerems et al., Ferroelectrics 228(1) (1999) 333-341.
4. J.D. Verhoeven et al., Journal of Applied Physics 66(2) (1989) 772-779.
5. J. Atulasimha, A.B. Flatau, Smart Materials and Structures 20(4) (2011) 043001.
6. A.E. Clark et al., Journal of Applied Physics 93(10) (2003) 8621-8623.
7. A.E. Clark et al., IEEE Transactions on Magnetics 36(5) (2000) 3238-3240.
8. E.M. Summers et al., Journal of Materials Science 42(23) (2007) 9582-9594.
9. Q. Xing et al., Acta Materialia 56(16) (2008) 4536-4546.
10. A. Clark et al., Journal of Applied Physics 97 (2005) 10M316.
11. Q. Xing et al., Acta Materialia 56(16) (2008) 4536-4546.
12. I. Golovin et al., Intermetallics 114 (2019) 106610.
13. M.V. Matyunina et al., Phase Transitions 92(2) (2019) 101-116.
14. A.A. Emdadi et al., Journal of Alloys and Compounds 619 (2015) 58-65.
15. I. Golovin et al., Journal of Alloys and Compounds 751 (2018) 364-369.
16. N. Srisukhumbowornchai, S. Guruswamy, Journal of Applied Physics 92(9) (2002) 5371-5379.
17. T.V. Jayaraman et al., Journal of Applied Physics 102(5) (2007) 053905.
18. I.S. Golovin et al., Journal of Alloys and Compounds 811 (2019) 152030.
19. R. Wu, Journal of Applied Physics 91 (2002) 7358-7360.
20. M.P. Ruffoni et al., Phys. Rev. Lett. 101 (2008) 147202.
21. Y. Du et al., Physical Review B 81(5) (2010) 054432.
22. H. Cao et al., Phys. Rev. Lett. 102 (2009) 127201.
23. T. Lograsso et al., Journal of Alloys and Compounds 350(1-2) (2003) 95-101.
24. H. Wang et al., Scientific Reports 3(1) (2013) 3521.
25. H. Wang et al., Applied Physics Letters 97(26) (2010) 262505.
26. M. Huang et al., Applied Physics Letters 95(17) (2009) 171907.
27. G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758-1775.
28. G. Kresse, J. Furthmuller, Phys. Rev. B 54 (1996) 11169-11186.
29. J.P. Perdew et al., Phys. Rev. Lett. 78 (1997) 1396-1396.
30. V. Wang et al., Computer Physics Communications 267 (2021) 108033.
31. D.-Sh. Wang et al., Phys. Rev. B 47 (1993) 14932-14947.
Review
For citations:
Inerbaev T.M., Abuova A.U., Dauletbekova A.K., Abuova F.U., Kaptagay G.A., Zakieva Z., Eltizarova M., Barakov A. Magnetic anisotropy and stability of Fe3Ga compounds. Eurasian Journal of Physics and Functional Materials. 2021;5(4):229-235. https://doi.org/10.32523/ejpfm.2021050407