Preview

Photoelectric properties of TiO2-GO+Ag ternary nanocomposite material

https://doi.org/10.29317/ejpfm.2020040309

Abstract

A ternary nanocomposite material based on TiO 2 , graphene oxide and core-shell nanostructures of Ag/TiO2 composition was obtained by a two-step hydrothermal method. The formation of a dual TiO2-GO nanocomposite was confirmed by Raman spectroscopy data, where the nanocomposite spec- tra contain peaks characteristic of both TiO 2 and graphene oxide. Studies of electrophysical character- istics have shown that the addition of plasmon nanoparticles leads to an improvement in the charge-transfer characteristics of the synthesized material. This is due to the fact that the charge transfer resistance of a ternary nanocomposite material TiO2-GO-Ag is noticeably lower than for pure TiO 2 ( 13 times) and TiO2-GO nanocomposite ( 3 times). In addition, the prescence of Ag/TiO2 core-shell nanostructures in the TiO2-GO nanocomposite material leads to an increase in the efficiency of conversion of incident light into photocurrent, which will be resulted in the growth of photocatalytic activity of synthesized materials.

About the Authors

N. Kh. Ibrayev
Buketov Karaganda University
Kazakhstan


A. Zh. Zhumabekov
Buketov Karaganda University; Toraighyrov University
Kazakhstan


E. V. Seliverstova
Buketov Karaganda University
Kazakhstan


References

1. K. Sasan et al., Nanoscale 7 (2015) 13369-13372.

2. O. Oluwafunmilola, M. Maroto-Valer, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 24 (2015) 16-42.

3. A. Mills, S. Hunte, Journal of Photochemistry and Photobiology A: Chemistry 108 (1997) 1-35.

4. P.V. Kamat, Journal Physics Chemistry Letters 242 (2011) 242-251.

5. M. Ikram et al., Current Applied Physics 15 (2015) 48-54.

6. X. Wang et al., Nano Letters 8 (2008) 323-327.

7. M. Ikram et al., Mater. Res. Bull. 75 (2015).

8. Z. Zhang et al., J. Phys. Chem.: B 102 (1998) 10871-10878.

9. Q. Li et al., J. Am. Chem. Soc. 133 (2011) 10878-10884.

10. P.K. Dubey et al., Int. J. Hydrogen energ. 39 (2014) 16282-16292.

11. L.Y. Ozer et al., J. Photochem. and Photobiol. C: Photochem. Rev. 33 (2017) 132-164.

12. A.Zh. Zhumabekov et al., Theoretical and Experimental Chemistry 55 (2020) 398-406.

13. A.Zh. Zhumabekov et al., Bulletin of the University of Karaganda-Physics 93 (2019) 54-60.

14. H. Zhang et al., J. Li ACS Nano 4 (2010) 380-386.

15. G. Williams et al., ACS Nano 2 (2008) 1487-1491.

16. M. He et al., Jour. Materials Chem. 22 (2012) 24254-24264.

17. J.D. Roy-Mayhew et al., ACS Nano 4 (2010) 6203-6211.

18. Q.B. Zheng et al., Carbon 49 (2011) 2905-2916.

19. J. Zhang et al., Environmental Technology (2019) 1-13.

20. S. Sreeja, K. Vidya Shetty, Environ. Sci. Pollut. Res. 23 (2016) 18154-18164.

21. T. Wang et al., Physica E 112 (2019) 128-136.

22. N.Kh. Ibrayev et al., Material Research Express 6 (2019) 1-11.

23. D.A. Afanasyev et al., Russ. Jour. Phys. Chem. A. 90 (2016) 833-837.

24. V. Swamy et al., Phys. Rev. B 71 (2005) 184302-12.

25. W. Zhang et al., Angew. Intern. Edit. Chem. 48 (2009) 5864-5868.

26. B. Zhang et al., J. Sci. Rep. 3 (2013) 1836-1843.


Review

For citations:


Ibrayev N.Kh., Zhumabekov A.Zh., Seliverstova E.V. Photoelectric properties of TiO2-GO+Ag ternary nanocomposite material. Eurasian Journal of Physics and Functional Materials. 2020;4(3):261-267. https://doi.org/10.29317/ejpfm.2020040309

Views: 450


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2522-9869 (Print)
ISSN 2616-8537 (Online)