Preview

Eurasian Journal of Physics and Functional Materials

Advanced search

Computational analysis of a neutron trap in the center of the WWR-K reactor core for irradiation tests of large-sized objects

https://doi.org/10.32523/ejpfm.2022060104

Full Text:

Abstract

Nowadays, the WWR-K research reactor is operated with low-enriched uranium fuel and a beryllium neutron reflector. Irradiation positions located in the core make it possible to irradiate objects no larger than 50 mm in size. In the reactor tank, behind the beryllium reflector, there are irradiation positions with a diameter of 200 mm, but in them, in comparison with irradiation positions in the core, the neutron intensity is lower. This motivated us to carry out computational studies on the generation of a large diameter neutron trap in the center of the WWR-K reactor core. The paper presents the results of neutron-physical calculations on the generation of a neutron trap in the center of the WWR-K reactor core. The generation of a large diameter neutron trap in the core of the WWR-K reactor will make it possible to carry out radiation tests of large objects. For this, it is necessary to change the layout of the core. The influence of the transformation of the core on the experimental characteristics of the WWR-K reactor is shown.

About the Authors

A. A. Shaimerdenov
The Institute of Nuclear Physics
Kazakhstan

Almaty



D. S. Sairanbayev
The Institute of Nuclear Physics
Kazakhstan

Almaty



Sh. Kh. Gizatulin
The Institute of Nuclear Physics
Kazakhstan

Almaty



N. K. Romanova
The Institute of Nuclear Physics
Kazakhstan

Almaty



M. T. Aitkulov
The Institute of Nuclear Physics
Kazakhstan

Almaty



M. Sh. Tulegenov
The Institute of Nuclear Physics
Kazakhstan

Almaty



Zh. T. Bugubay
The Institute of Nuclear Physics
Kazakhstan

Almaty



S. A. Baitelesov
The Institute of Nuclear Physics
Uzbekistan

Tashkent



References

1. S. Askerbekov et al., International Journal of Hydrogen Energy 47 (2021) 7368-7378.

2. P.F. Kashaykin et al., IEEE Transactions on Nuclear Science 67 (2020) 2162-2171.

3. P.F. Kashaykin et al., Nuclear Materials and Energy 27 (2021) 100981.

4. M. S. Merezhko et al., Physics of Metals and Metallography 120 (2019) 716-721.

5. T. Kulsartov et al., Fusion Science and Technology 76 (2020) 1-10.

6. E. Batyrbekov et al., Proceedings of the International Conference on Atomic and Molecular Pulsed Lasers XIII (2018) 106141K.

7. K. Samarkhanov et al., Proceedings of the International Conference Laser Optics (2020) 1.

8. K. Samarkhanov et al., Eurasian Chemico-Technological Journal 23 (2021) 95-102.

9. M. Blaauw et al., J Radioanal. Nucl. Chem. 311 (2017) 409-418.

10. T. Kulsartov et al., Nuclear Materials and Energy 30 (2022) 101129.

11. T. Kulsartov et al., Nuclear Materials and Energy 30 (2022) 101115.

12. S. Akayev et al., J. Phys.: Conf. Ser. 2155 (2022) 012007.

13. S. Akayev et al., IOP Conf. Ser.: Mater. Sci. Eng. 1005 (2020) 012007.

14. M. Merezhko et al., J. Phys.: Conf. Ser. 2155 (2022) 012009.

15. P. Savva et al., Nuclear Technology 188 (2014) 322-335.

16. K. Routsonis et al., Radiation Effects and Defects in Solids 171 (2016) 746-753.

17. D. Chandler et al., Nuclear Engineering and Design 366 (2020) 110752.

18. A. Norouzi et al., Annals of Nuclear Energy 60 (2013) 308-315.

19. M. Henrique et al., Annals of Nuclear Energy 38 (2011) 610-614.

20. V.D. Ananiev et al., Voprosy atomnoj nauki i tehniki 3 (2018) 11-27. (In Russian)

21. O.Yu. Kochnov et al., Atomnaja jenergija 125 (2018) 146-148. (In Russian)

22. S.A. Baytelesov et al., Nucl. Phys. At. Energy 21 (2020) 152-156.

23. S.A. Baytelesov et al., Atomic Energy 104 (2008) 349-354.

24. A. Shaimerdenov et al., Physics of Atomic Nuclei 81 (2018) 1-4.

25. A.A. Shaimerdenov et al., Atomic energy 123 (2017) 15-20.

26. A.A. Shaimerdenov et al., Alternative energy and ecology 10 (2018) 23-33.

27. F.M. Arinkin et al., Voprosy atomnoj nauki i tehniki. Serija Fizika jadernyh reaktorov 3 (2012) 74-80. (In Russian)

28. F.M. Arinkin et al., Izvestija Tomskogo politehnicheskogo universiteta. Serija Tehnika i Tehnologii v Jenergetike 325 (2014) 6-15. (In Russian)

29. J. Goorley et al., Initial MCNP6 Release Overview MCNP6 Version 1.0, LA-UR-13-22934. (Los Alamos National Laboratory, Los Alamos, 2013) 43 p.

30. F.B. Brown et al., Guide for Using ENDF/B-VIII.0 Nuclear Data with MCNP, LA-UR-20-30460. (Los Alamos National Laboratory, Los Alamos, 2020) 12 p.

31. D. Sairanbayev et al., Recent Contributions to Physics 71 (2019) 35-44.

32. A. Shaimerdenov et al., Fusion Science and Technology 76 (2020) 304-313.

33. D. Sairanbayev et al., Applied radiation and isotopes 169 (2021) 109561.


Review

For citations:


Shaimerdenov A.A., Sairanbayev D.S., Gizatulin S.K., Romanova N.K., Aitkulov M.T., Tulegenov M.S., Bugubay Z.T., Baitelesov S.A. Computational analysis of a neutron trap in the center of the WWR-K reactor core for irradiation tests of large-sized objects. Eurasian Journal of Physics and Functional Materials. 2022;6(1):38-46. https://doi.org/10.32523/ejpfm.2022060104

Views: 218


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2522-9869 (Print)
ISSN 2616-8537 (Online)