Comparative study of the structure and properties of homogeneous and gradient Ni-Cr-Al coatings
Abstract
This paper compares the structure and properties of homogeneous and gradient coatings in the Ni-Cr-Al system obtained by detonation spraying. According to X-ray analysis, only the CrNi3 phase appears in the homogeneous coating, and CrNi3 , Al, and NiAl phases appear on the gradient coating. The elements distribution graphs show that a small amount of aluminum is distributed over the depth of the homogeneous coating and in the gradient coating. The distribution of aluminum in the gradient Ni-Cr-Al coating gradually increases from the depth to the surface, and a high amount of aluminum forms in the coating surface. According to EDS analysis, a small amount of aluminium is distributed on the surface of the homogeneous coating and a large amount on the gradient coating. In the gradient coating, aluminium gradually increases from the substrate surface to the coating surface. Also, the gradient coating has a higher hardness than the homogeneous coating.
About the Authors
B. K. RakhadilovKazakhstan
Ust-Kamenogorsk
M. Maulet
Kazakhstan
Ust-Kamenogorsk
D. N. Kakimzhanov
Kazakhstan
Ust-Kamenogorsk
O. A. Stepanova
Kazakhstan
Ust-Kamenogorsk
G. B. Botabaeva
Kazakhstan
Ust-Kamenogorsk
References
1. P.S. Sidky et al., British Corrosion Journal 34(3) (1990) 171-183.
2. D. Romanov et al., Journal of Materials Research and Technology 8(6) (2019) 5515-5523.
3. B. Swain, Surface Topography: Metrology and Properties 9(2) (2021) 025039.
4. Z. Wang, Journal of Alloys and Compounds 828 (2020) 154412.
5. A. Mokhtar et al., Metals 10(1) (2020) 42.
6. G.H. Meng et al., Surface and Coatings Technology 368 (2019) 192-201.
7. I. Gurrappa, Surface and Coatings Technology 139(2) (2001) 272-283.
8. W. Sloof et al., International Journal of Materials Research 100(10) (2009) 1318-1330.
9. M.R. Jackson et al., Thin Solid Films 45(2) (1977) 376.
10. R. Darolia, International Material Reviews 58(6) (2013) 315-348.
11. A. Meghwal et al., Journal of Thermal Spray Technology 29(5) (2020) 857-893.
12. K. Ogawa, Turbines-Materials, Modeling and Performance (2015).
13. R. Lowrie et al., Thin Solid Films 45(3) (1977) 491-498.
14. G. Bolelli et al., Surface and Coatings Technology 206(8) (2012) 2585-2601.
15. M. Naebe et al., Applied Materials Today 5 (2016) 223-245.
16. W.Y. Lee et al., Journal of the American Ceramic Society 79(12) (1996) 3003-3012.
17. D. Toma et al., Oxidation of Metals 53(1) (2000) 125-137.
18. G. Mauer et al., Journal of Thermal Spray Technology 23(1) (2014) 140-146.
19. J.C. Pereira et al., Surface Coatings and Technology 338 (2018) 22-31.
20. C.K. Abdullah et al., Vacuum 180 (2020) 109609.
21. Jun-guo GAO et al., Transactions Nonferrous Metals Society of China 25 (2015) 817-823.
22. M. Maulet et al., Eurasian Journal of Physics and Functional Materials 4(3) (2020) 249-254.
23. M. Maulet et al., 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP) (2020) 01TFC17-1-01TFC17-3.
24. B. Rakhadilov et al., Coatings 11(2) (2021) 218.
25. J.H. Kim et al., Surface and Coatings Technology 168 (2003) 275-280.
26. B.K. Rakhadilov et al., Eurasian Journal of Physics and Functional Materials 4(2) (2020) 160-166.
27. V.Y. Ulianitsky et al., Metals 9 (2019) 1244.
Review
For citations:
Rakhadilov B.K., Maulet M., Kakimzhanov D.N., Stepanova O.A., Botabaeva G.B. Comparative study of the structure and properties of homogeneous and gradient Ni-Cr-Al coatings. Eurasian Journal of Physics and Functional Materials. 2022;6(1):47-55.