Preview

Eurasian Journal of Physics and Functional Materials

Advanced search

Synthesis, X-ray phase analysis and differential thermal analysis of nanocrystalline superionic KxCu1.85S (x<0.05) copper sulfides

https://doi.org/10.32523/ejpfm.2022060107

Full Text:

Abstract

Superionic semiconductor chalcogenides with mixed electronic-ionic conductivity have very low lattice thermal conductivity and are excellent thermoelectrics. Doping with other elements is one of the methods for optimizing the useful properties of a material. In this work, nanosized polycrystalline alloys of nonstoichiometric Cu1.85S copper sulfide with a low content of potassium are studied. The paper presents the results of X-ray phase analysis, differential thermal analysis (DTA) and electron microscopy of differential thermal analysis of KxCu1.85S alloys. The resulting alloys are a mixture of phases, in which the main share is djurleite - non-stoichiometric copper sulfide of the composition Cu1.97÷1.93S , in addition, depending on the composition of the alloy, there are impurities of monoclinic and hexagonal chalcocite Cu2S , roxbyite Cu1.81S , anilite Cu1.75S , traces of metallic copper. All alloys contain inclusions of Cu2O copper oxide. DTA detected a superionic phase transition from an ordered
low-symmetry djurleite phase to a disordered superionic hexagonal phase of copper sulfide at about 373-383 K. In addition, DTA revealed two thermal effects at about 433 K and 460 K, which are absent in binary copper sulfide. The reason for the effects may be the redistribution of impurity potassium ions in the copper sulfide lattice.

About the Authors

S. M. Sakhabayeva
L.N. Gumilyov Eurasian National University; Astana international university
Kazakhstan

Nur-Sultan



M. Kh. Balapanov
Bashkir State University
Russian Federation

Ufa



K. A. Kuterbekov
L.N. Gumilyov Eurasian National University
Kazakhstan

Nur-Sultan



R. Kh. Ishembetov
Bashkir State University
Russian Federation

Ufa



M. M. Kubenova
L.N. Gumilyov Eurasian National University
Kazakhstan

Nur-Sultan



Sh. G. Giniyatova
L.N. Gumilyov Eurasian National University
Kazakhstan

Nur-Sultan



S. A. Nurkenov
Astana international university
Kazakhstan

Nur-Sultan



B. M. Akhmetgaliev
Bashkir State University
Russian Federation

Ufa



M. Kh. Zeleev
Bashkir State Medical University
Russian Federation

Ufa



R. A. Yakshibaev
Bashkir State University
Russian Federation

Ufa



G. S. Seisenbayeva
L.N. Gumilyov Eurasian National University
Kazakhstan

Nur-Sultan



References

1. P. Qiu et al., Energy Storage Materials 3 (2016) 85-97.

2. M. Gao et al., Chemical Society Reviews 42 (2013) 2986-3017.

3. F.F. Jaldurgam et al., Nanomaterials 11 (2021) 895.

4. Y. Sun et al., J. Mater. Chem. A. 5 (2017) 5098-5105.

5. M.M. Kubenova et al., Nanomaterials 11(9) (2021) 2238.

6. M.Kh. Balapanov et al., Letters on materials 6(4) (2020) 439-444.

7. D.J. Chakrabarti et al., Bull. Alloy Phase Diagr. 4 (1983) 254.

8. K. Okamoto et al., Japan. Journal of Applied Physics 12(8) (1973) 1130-1138.

9. S.M. Sakhabayeva et al., Recent Contibutions to Physics. 4(79) (2021) 72-81.

10. F. Gronvold et al., J. Chem. Thermodyn. 19 (1987) 1183-1198.

11. X. Li et al., J. Mater. Chem. A. 1 (2013) 13721-13726.

12. M.Kh. Balapanov et al., Vestnik Bashkirskogo universiteta 26(4) 2021 961-964. (in Russian)

13. Z. Zhu et al., Appl. Phys. Mater. Sci. Process. 124 (2018) 124.

14. Z.H. Ge et al., Adv. Energy Mater. 6 (2016) 1600607.

15. Yi-xin Zhang et al., Materials Science in Semiconductor Processing 107 (2020) 104848.

16. W. Yong et al., Acta Phys. Sin. 62 (2013) 17802-17809.

17. Y. Sumirat et al., J. Porous Mater. 13 (2006) 439.

18. J. Martin et al., Appl. Phys. Lett. 90 (2007) 222112.

19. H. Goldsmid, Materials 2 (2009) 903-910.

20. S.-C. Ur et al., J. Mater. Sci. 42 (2007) 2143-2149.

21. F.B. Swinkels et al., Acta Metall. 31 (1983) 1829-1840.

22. S.R. Gupta et al., Phys. Status Solidi A 8 (1971) 267-270.

23. P.R. Sahm, Mater. Res. Bull. 2 (1967) 85-89.

24. N. Savvides et al., J. Phys. C: Solid State Phys. 13 (1980) 4671.

25. M. Omori, Mater. Sci. Eng. A 287 (2000) 183-188.

26. Z. Munir et al., J. Mater. Sci. 41 (2006) 763-777.

27. M. Scheele et al., Adv. Funct. Mater 19 (2009) 3476.

28. L.D. Zhao et al., Solid State Sciences 10 (2008) 651-658.

29. W. Mumme et al., Can. Mineral. 50 (2012) 423-430.

30. M. Hellenbrandt, Crystallography Reviews 10(1) (2004) 17-22.

31. K. Koto et al., Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 26(7) (1970) 915-924.

32. R.W. Potter II, H.T. Evans Jr., J. Res. U.S. Geol. Survey 4 (1976) 205-212.

33. R.J. Cava et al., Solid State Ionics. 5 (1981) 501-504.

34. H.T. Evans, Nature Phys. Sci. 232 (1971) 69-70.

35. H.T. Evans, Zeitschrift zur Kristallographie 150 (1979) 299-320.

36. J.B. Rivest et al., J. Phys. Chem. Lett. 2 (2011) 2402-2406.

37. J. Gong, P.K. Jain, Nature communications 10 (2019) 3285.

38. S. Parsons et al., Acta Crystallographica Section D 59 (2003) 1995-2003.


Review

For citations:


Sakhabayeva S.M., Balapanov M.K., Kuterbekov K.A., Ishembetov R.K., Kubenova M.M., Giniyatova S.G., Nurkenov S.A., Akhmetgaliev B.M., Zeleev M.K., Yakshibaev R.A., Seisenbayeva G.S. Synthesis, X-ray phase analysis and differential thermal analysis of nanocrystalline superionic KxCu1.85S (x<0.05) copper sulfides. Eurasian Journal of Physics and Functional Materials. 2022;6(1):71-84. https://doi.org/10.32523/ejpfm.2022060107

Views: 500


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2522-9869 (Print)
ISSN 2616-8537 (Online)