Evaluation of threshold conditions for latent track formation in nanocrystalline Y2Ti2O7
Abstract
We present the first report on the structural effects induced by swift xenon ions in nanocrystalline pyrochlore Y2Ti2O7 (outside the metal matrix) studied using high resolution transmission electron microscopy. Latent amorphous tracks were observed in the range of electronic stopping powers 4.8–23.2 keV/nm. Obtained results enabled estimation of the threshold energy loss values for formation of continuous and not continuous (surface) tracks at ≈ 8 keV/nm and 3.5 keV/nm, respectively.
About the Authors
A. IbrayevaSouth Africa
Port Elizabeth
A. Mutali
South Africa
Port Elizabeth
J. O’Connell
South Africa
Port Elizabeth
A. Sohatsky
Russian Federation
Dubna
V. Skuratov
Russian Federation
Dubna
L. Alekseeva
Russian Federation
Nizhny Novgorod
E. Korneeva
Russian Federation
Dubna
R. Rymzhanov
Kazakhstan
Nur-Sultan
References
1. S. Moll et al., Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 268 (2010) 2933–2936.
2. R.C. Ewing et al., J. Appl. Phys. 95 (2004) 5949–5971.
3. S.X. Wang et al., J. Mater. Res. 14 (1999) 4470–4473.
4. S.X. Wang et al., Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 148 (1999) 704–709.
5. J. Lian et al., Phys. Rev. Lett. 87 (2001) 145901.
6. B.D. Begg et al., J. Nucl. Mater. 289 (2001) 188–193.
7. J. Lian et al., Phys. Rev. B. 66 (2002) 054108.
8. J. Lian et al., Acta Mater. 51 (2003) 1493–1502.
9. V.A. Skuratov et al., J. Nucl. Mater. 456 (2015) 111–114.
10. J.H. O’Connell et al. Acta Phys. Pol. A 136 (2019) 233–236.
11. K. Nakajima et al., Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 291 (2012) 12–16.
12. A. Ibrayeva et al., Proceedings of the 14th International Conference of the Interaction of Radiation with Solids (Minsk, Belarus, 2021) 125–127.
13. M. Lang et al., Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 268 (2010) 2951–2959.
14. S. Moll et al., Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 268 (2010) 2933–2936.
15. G. Sattonnay et al., Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 272 (2012) 261–265.
16. G. Sattonnay et al., Acta mater. 61 (2013) 6492–6505.
17. I. Jozwik-Biala et al., Acta mater. 61 (2013) 4669–4675.
18. M.L. Lescoat et al., J. Nucl. Mater. 417 (2011) 266–269.
19. J. Ribis et al., J. Nucl. Mater. 417 (2011) 262–265.
20. I. Monnet et al., J. Nucl. Mater. 424 (2012) 12–16.
21. V.A. Skuratov et al., J. Nucl. Mater. 442 (2013) 449–457.
22. J. Shamblin et al., Acta Mater. 117 (2016) 207–215.
23. A. Ibrayeva et al,. Nucl. Mater. Energy 30 (2022) 101106.
24. S.V. Rogozhkin et al., Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 486 (2021) 1–10.
25. V. Grover et al., Phys. Chem. Chem. Phys. 16 (2014) 27065–27073.
26. W. Liu et al., Mater. 9 (2016) 105.
27. C. Tang et al., Appl. Phys. Lett. 100 (2012) 201903.
28. J. Lee et al., Calphad 31 (2007) 105–111.
29. J. O’Connell et al., Phys. status solidi (b) 253 (2016) 2144–2149.
30. R.A. Rymzhanov et al. J. Appl. Phys. 127 (2020) 015901.
31. M. Toulemonde et al., Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 166 (2000) 903–912.
32. M. Toulemonde et al., Mat. Fys. Medd. 52 (2006) 263–292.
Review
For citations:
Ibrayeva A., Mutali A., O’Connell J., Sohatsky A., Skuratov V., Alekseeva L., Korneeva E., Rymzhanov R. Evaluation of threshold conditions for latent track formation in nanocrystalline Y2Ti2O7. Eurasian Journal of Physics and Functional Materials. 2022;6(2):124-131. https://doi.org/10.32523/ejpfm.2022060204