Preview

Eurasian Journal of Physics and Functional Materials

Advanced search

Evaluation of threshold conditions for latent track formation in nanocrystalline Y2Ti2O7

https://doi.org/10.32523/ejpfm.2022060204

Full Text:

Abstract

We present the first report on the structural effects induced by swift xenon ions in nanocrystalline pyrochlore Y2Ti2O7 (outside the metal matrix) studied using high resolution transmission electron microscopy. Latent amorphous tracks were observed in the range of electronic stopping powers 4.8–23.2 keV/nm. Obtained results enabled estimation of the threshold energy loss values for formation of continuous and not continuous (surface) tracks at ≈ 8 keV/nm and 3.5 keV/nm, respectively.

About the Authors

A. Ibrayeva
Center for High Resolution Transmission Electron Microscopy; Institute of Nuclear Physics
South Africa

Port Elizabeth



A. Mutali
Center for High Resolution Transmission Electron Microscopy; L.N. Gumilyov Eurasian National University; Joint Institute for Nuclear Research
South Africa

Port Elizabeth



J. O’Connell
Center for High Resolution Transmission Electron Microscopy
South Africa

Port Elizabeth



A. Sohatsky
Joint Institute for Nuclear Research
Russian Federation

Dubna



V. Skuratov
Joint Institute for Nuclear Research; National Research Nuclear University MEPhI; Dubna State University
Russian Federation

Dubna



L. Alekseeva
Physico-Technical Research Institute
Russian Federation

Nizhny Novgorod



E. Korneeva
Joint Institute for Nuclear Research; National University of Science and Technology NUST-MISiS
Russian Federation

Dubna



R. Rymzhanov
Institute of Nuclear Physics; Joint Institute for Nuclear Research
Kazakhstan

Nur-Sultan



References

1. S. Moll et al., Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 268 (2010) 2933–2936.

2. R.C. Ewing et al., J. Appl. Phys. 95 (2004) 5949–5971.

3. S.X. Wang et al., J. Mater. Res. 14 (1999) 4470–4473.

4. S.X. Wang et al., Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 148 (1999) 704–709.

5. J. Lian et al., Phys. Rev. Lett. 87 (2001) 145901.

6. B.D. Begg et al., J. Nucl. Mater. 289 (2001) 188–193.

7. J. Lian et al., Phys. Rev. B. 66 (2002) 054108.

8. J. Lian et al., Acta Mater. 51 (2003) 1493–1502.

9. V.A. Skuratov et al., J. Nucl. Mater. 456 (2015) 111–114.

10. J.H. O’Connell et al. Acta Phys. Pol. A 136 (2019) 233–236.

11. K. Nakajima et al., Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 291 (2012) 12–16.

12. A. Ibrayeva et al., Proceedings of the 14th International Conference of the Interaction of Radiation with Solids (Minsk, Belarus, 2021) 125–127.

13. M. Lang et al., Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 268 (2010) 2951–2959.

14. S. Moll et al., Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 268 (2010) 2933–2936.

15. G. Sattonnay et al., Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 272 (2012) 261–265.

16. G. Sattonnay et al., Acta mater. 61 (2013) 6492–6505.

17. I. Jozwik-Biala et al., Acta mater. 61 (2013) 4669–4675.

18. M.L. Lescoat et al., J. Nucl. Mater. 417 (2011) 266–269.

19. J. Ribis et al., J. Nucl. Mater. 417 (2011) 262–265.

20. I. Monnet et al., J. Nucl. Mater. 424 (2012) 12–16.

21. V.A. Skuratov et al., J. Nucl. Mater. 442 (2013) 449–457.

22. J. Shamblin et al., Acta Mater. 117 (2016) 207–215.

23. A. Ibrayeva et al,. Nucl. Mater. Energy 30 (2022) 101106.

24. S.V. Rogozhkin et al., Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 486 (2021) 1–10.

25. V. Grover et al., Phys. Chem. Chem. Phys. 16 (2014) 27065–27073.

26. W. Liu et al., Mater. 9 (2016) 105.

27. C. Tang et al., Appl. Phys. Lett. 100 (2012) 201903.

28. J. Lee et al., Calphad 31 (2007) 105–111.

29. J. O’Connell et al., Phys. status solidi (b) 253 (2016) 2144–2149.

30. R.A. Rymzhanov et al. J. Appl. Phys. 127 (2020) 015901.

31. M. Toulemonde et al., Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 166 (2000) 903–912.

32. M. Toulemonde et al., Mat. Fys. Medd. 52 (2006) 263–292.


Review

For citations:


Ibrayeva A., Mutali A., O’Connell J., Sohatsky A., Skuratov V., Alekseeva L., Korneeva E., Rymzhanov R. Evaluation of threshold conditions for latent track formation in nanocrystalline Y2Ti2O7. Eurasian Journal of Physics and Functional Materials. 2022;6(2):124-131. https://doi.org/10.32523/ejpfm.2022060204

Views: 482


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2522-9869 (Print)
ISSN 2616-8537 (Online)