Preview

Eurasian Journal of Physics and Functional Materials

Advanced search

Exciton-like luminescence of KCl matrix under thermoelastic, local and uniaxial deformation

https://doi.org/10.32523/ejpfm.2022060206

Full Text:

Abstract

The radiative relaxation of exciton-like formations in KCl-Na single crystal has been studied by experimental methods of luminescent spectroscopy. The amplifying effect of the radiation intensity with a maximum at 2.8 eV up to 500 times as compared to pure KCl has been detected in KCl-Na. The luminescence efficiency of an exciton-like formation increases with rise in: sodium ions concentration ( 10 ÷ 1000 ppm), thermal exposure ( 500◦C ÷ 600◦C ) and the degree of uniaxial deformation along <100> and <110> crystallographic directions. Previously, such a scale of the luminescence enhancement effect has not been registered in KCl matrix at room temperature. At high sodium concentrations (1000 ppm) in KCl-Na crystals, the additional intense emission with a maximum at 3.1 eV has also been revealed, which is typical for pair sodium ions. It is interpreted that the exciton-like formation in the sodium field with the maximum quantum yield of luminescence is formed by recombination assembly of electron-hole pairs due to the mobility of unrelaxed holes.

About the Authors

K. Shunkeyev
K. Zhubanov Aktobe regional university
Kazakhstan

Aktobe



A. Tilep
K. Zhubanov Aktobe regional university
Kazakhstan

Aktobe



A. Lushchik
University of Tartu
Estonia

Tartu



Sh. Sagimbayeva
K. Zhubanov Aktobe regional university
Kazakhstan

Aktobe



References

1. K.S. Song, R.T. Williams, Self-Trapped Excitons (Berlin:Springer, 1996) 404 p.

2. Ch. Lushchik, A. Lushchik, Phys. Solid State 60 (2018) 1487–1505

3. Ch.B. Lushchik, A.Ch. Lushchik, Decay of Electronic Excitations with Defect Formation in Solids (Moscow: Nauka, 1989) 263 p. (in Russian)

4. Je.D. Aluker, D.Ju. Lusis, S.A. Chernov., Jelektronnye vozbuzhdenija I radioljuminescencija shhelochno-galoidnyh kristallov (Riga: Zinatne, 1979) 252 p. (In Russian)

5. F. Froborg et al., Journal of Physics G: Nuclear and Particle Physics 47(9) (2020) 094002.

6. G. Adhikari et al., Physical Review Letters 123(3) (2019) 031302.

7. Ch. Lushchik et al., physica status solidi (b) 114(1) (1982) 103–111.

8. F. Agullo-Lopez et al., Cryst. Latt. Def. and Amorph. Mat. 9 (1982) 227–252.

9. S. Wakita, Journal of the Physical Society of Japan 31(5) (1971) 1505–1512.

10. T. Hayashi et al., J. Luminescence 38 (1987) 96–98

11. V. Babin et al., J. of Physics Condensed Matter. 11 (1999) 2303–2317.

12. V. Babin et al., J. Lumin. 76-77 (1998) 502–506.

13. K.Sh. Shunkeyev et al., Low Temperature Physics 42(7) (2016) 580–583.

14. A. Elango et al., Radiation Measurements 33(5) (2001) 823–827.

15. L. Myasnikova et al., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 464 (2020) 95–99.

16. K. Shunkeyev et al., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 509 (2021) 1–6.

17. K. Shunkeyev et al., Journal of Physics: Conference Series 830 (2017) 012139.

18. A. Laisaar et al., High Pressure Research 3(1-6) (1990) 78–80.

19. A. Kuznetsov et al., JETP Lett. 40 (1984) 899-902.

20. T. Tsujimoto et al., Journal of Luminescence 60-61 (1994) 798–801.

21. T. Tsujimoto et al., Journal of Luminescence 72-74 (1997) 895–897.

22. T. Tsujimoto et al., Physical Review B 54(23) (1996) 16579–16584.

23. H. Nishimura et al., Japanese Journal of Applied Physics 32 (1993) 288.

24. T.N. Nurakhmetov et al., Optical Materials 61 (2016) 64–67.

25. T.N. Nurakhmetov et al., Journal of Luminescence 171 (2016) 9–12.

26. R.I. Gindina et al., Trudy IF AN JeSSR 49 (1979) 45–89. (In Russian)

27. O.A. Nikiforova et al., Trudy IF AN JeSSR 57 (1985) 157–174. (In Russian)

28. N.E. Lushhik et al., Trudy IF AN JeSSR 61 (1987) 7–32. (In Russian)

29. K. Shunkeyev et al., Journal of Physics: Conference Series 400(5) (2012) 052032.

30. K. Shunkeyev et al., Eurasian Journal of Physics and Functional Materials 2(3) (2018) 267–273.

31. V. Babin et al., Journal of Luminescence 81(1) (1999) 71–77.

32. E. Vasilchenko et al., physica status solidi (b) 174(1) (1992) 155–163.

33. A. Lushchik et al., physica status solidi (b) 168(2) (1991) 413–423.

34. B.I. Smirnov, Dislokacionnaja struktura i uprochnenija kristallov (Leningrad: Nauka, 1981) 235 p. (In Russian)


Review

For citations:


Shunkeyev K., Tilep A., Lushchik A., Sagimbayeva S. Exciton-like luminescence of KCl matrix under thermoelastic, local and uniaxial deformation. Eurasian Journal of Physics and Functional Materials. 2022;6(2):139-150. https://doi.org/10.32523/ejpfm.2022060206

Views: 75


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2522-9869 (Print)
ISSN 2616-8537 (Online)