Preview

Eurasian Journal of Physics and Functional Materials

Advanced search

Assessment of thermodynamic parameters of the plasma chemical process for magnesium oxide production

https://doi.org/10.32523/ejpfm.2022060207

Full Text:

Abstract

This work are presented the calculation results of thermodynamic parameters of the reaction of magnesium fluoride decomposition by ionized water vapor with the formation of solid magnesium oxide and gaseous hydrogen fluoride at atmospheric pressure in the temperature range from room temperature to 2800◦C . The calculation of the thermodynamic parameters was carried out with the Reaction Equations software module of scientific programs HSCChemistry package. Thermodynamic analysis of magnesium fluoride MgF2 was carried out on a thermogravimetric analyzer TGA/DSC2. The thermodynamic parameters results are in good agreement with the results of thermogravimetric analysis. There were determined the optimum conditions for plasma-chemical processing of magnesium fluoride.

About the Authors

M. K. Kylyshkanov
Joint-Stock Company "Ulba Metallurgical Plant"
Kazakhstan

Ust-Kamenogorsk



K. A. Shestakov
Joint-Stock Company "Ulba Metallurgical Plant"
Kazakhstan

Ust-Kamenogorsk



Zh. B. Sagdoldina
Sarsen Amanzholov East Kazakhstan University
Kazakhstan

Ust-Kamenogorsk



S. A. Abdulina
D. Serikbayev East Kazakhstan technical university
Kazakhstan

Ust-Kamenogorsk



B. K. Rakhadilov
Sarsen Amanzholov East Kazakhstan University
Kazakhstan

Ust-Kamenogorsk



References

1. L.Ya. Shubov et al., E3S Web of Conferences 311 (2021) 09005.

2. P.K. Chu, X.P. Lu, Low Temperature Plasma Technology: Methods and Application (E-book, CRC Press, 2013) 493 p.

3. V.I. Lakshmanan, R. Roy, V. Ramachandran, Innovative Process Development in Metallurgical Industry: Concept to commission (E-book, Springer Cham, 2015) 440 p.

4. Z. Huda, Metallurgy for Physicists and Engineers: Fundamentals, Applications and Calculations (E-book, CRC Press, 2020) 380 p.

5. A. Fridman, Plasma Chemistry (Cambridge, Cambridge University Press, 2008) 978 p.

6. P.V. Korolev et al., Applied Solid State Chemistry 2 (2018) 7-17.

7. N.K. Foley et al., Beryllium Professional Paper 1802 (Reston VA, U.S. Geological Survey, 2017) 32 p.

8. V.E. Matyasova et al., Method of processing beryllium-containing waste (RF patent No. 2558588, 2015).

9. E.J. Mittemeijer, Fundamentals of Materials Science: The Microstructure-Property Relationship Using Metals as Model Systems (E-book, Springer, 2010) 594 p.

10. M.K. Kylyshkanov et al., Bulletin of the Karaganda university 3(103) (2021) 45-51.

11. Z. Ur Rehman et al., Korean Journal of Materials Research. 25(10) (2015) 509-515.

12. P.J. Haines, Principles of Thermal Analysis and Calorimetry (Cambridge, Royal Society of Chemistry, 2002) 238 p.

13. Yu.Z. Drachuk et al., Polityka Energetyczna - Energy Policy Journal 24 (2021) 169-182.

14. M. Capitelli et al., Fundamental Aspects of Plasma Chemical Physics: Kinetics (New York, Springer, 2016) 318 p.


Review

For citations:


Kylyshkanov M.K., Shestakov K.A., Sagdoldina Z.B., Abdulina S.A., Rakhadilov B.K. Assessment of thermodynamic parameters of the plasma chemical process for magnesium oxide production. Eurasian Journal of Physics and Functional Materials. 2022;6(2):151-158. https://doi.org/10.32523/ejpfm.2022060207

Views: 335


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2522-9869 (Print)
ISSN 2616-8537 (Online)