Preview

Eurasian Journal of Physics and Functional Materials

Advanced search

Investigation of the temperature and precursors concentration dependence of the formation of ZnSe quantum dots

https://doi.org/10.32523/ejpfm.2022060309

Full Text:

Abstract

Various variations of the synthesis of ZnSe quantum dots are investigated. The influence of temperature, the concentration of precursors and the time of synthesis of quantum dots was taken into account. Aliquot absorption spectra is measured for various time intervals and the dynamics of the growth of ZnSe quantum dots is estimated. Luminescence and absorption spectra were obtained for purified quantum dots. Based on the experimental data, the nucleation time of quantum dots, optimal methods of synthesis and growth control is determent. HRTEM images showed the average size of ZnSe quantum dot, the calculated band gap is 2.84 eV.

About the Authors

B. A. Duisenbay
L.N. Gumilyov Eurasian National University
Kazakhstan

Astana



T. T. Alibay
L.N. Gumilyov Eurasian National University
Kazakhstan

Astana



A. S. Akhmetova
L.N. Gumilyov Eurasian National University
Kazakhstan

Astana



K. B. Zhangylyssov
L.N. Gumilyov Eurasian National University
Kazakhstan

Astana



R. K. Daurenbekova
L.N. Gumilyov Eurasian National University
Kazakhstan

Astana



A. Zh. Kainarbay
L.N. Gumilyov Eurasian National University
Kazakhstan

Astana



T. N. Nurakhmetov
L.N. Gumilyov Eurasian National University
Kazakhstan

Astana



D. H. Daurenbekov
L.N. Gumilyov Eurasian National University
Kazakhstan

Astana



References

1. P.G. Joshi et al., Inorganic Chemistry Communications 135 (2022) 109070.

2. M.M. Kubenova et al., Nanomaterials 11(9) (2021) 2238.

3. K.A. Kuterbekov et al., Ionics 28 (2022) 4311–4319.

4. S. Lin et al., Nano Research 13 (2020) 824–831.

5. J. Zhou et al., Sensors and Actuators: B. Chemical 305 (2020) 127462.

6. J. Ke et al., Superlattices and Microstructures 156 (2021) 106965.

7. H.I. Elsaeedy et al., Optics & Laser Technology 141 (2021) 107139.

8. I.J. Gonzalez-Panzo et al., Journal of Crystal Growth 577 (2022) 126407.

9. V.S. Patil et al., Materials Today: Proceedings 60(2) (2022) 1099–1102.

10. T. Gupta et al., Surfaces and Interfaces 25 (2021) 101196.

11. V. Sharma, M.S. Mehata, Materials Research Bulletin 134 (2021) 111121.

12. J.D. Patel, F. Mighri, A. Ajji, Materials Letters 131 (2014) 366–369.

13. B. Hou et al., CrystEngComm 11 (2009) 1789–1792.

14. J.Y. Yoo et al., Journal of Luminescence 240 (2021) 118415.

15. H. Shen et al., Dalton Transactions 39 (2010) 11432–11438.

16. G.O. Eren et al., STAR protocols 2(3) (2021) 100664.

17. J.S. Yu et al., Materials Letters 253 (2019) 367–371.

18. T.A. Nepokupnaya et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1014 (2021) 165704.

19. S. Ebrahimi et al., Journal of Luminescence 244 (2022) 118757.

20. S.G. Passos et al., Journal of Luminescence 228 (2020) 117611.

21. J.S. Kim et al., Journal of Alloys and Compounds 914 (2022) 165372.


Review

For citations:


Duisenbay B.A., Alibay T.T., Akhmetova A.S., Zhangylyssov K.B., Daurenbekova R.K., Kainarbay A.Z., Nurakhmetov T.N., Daurenbekov D.H. Investigation of the temperature and precursors concentration dependence of the formation of ZnSe quantum dots. Eurasian Journal of Physics and Functional Materials. 2022;6(3):244-250. https://doi.org/10.32523/ejpfm.2022060309

Views: 271


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2522-9869 (Print)
ISSN 2616-8537 (Online)