Preview

Eurasian Journal of Physics and Functional Materials

Advanced search

Reserach of the mechanic-tribological characteristics of Ti3SiC2/TiC coatings after annealing

https://doi.org/10.29317/ejpfm.2020040109

Abstract

This article investigates the influence of thermal annealing on microhardness and wear resistance of the surface of steel U9/Y9 protected by a composite coating Ti 3 SiC 2 /TiC obtained by detonation sputtering. Thermal annealing was performed in the range of temperatures 700-900 ◦ C during 1 hour. Following annealing the formation of TiO 2 and an increase in the phase content of Ti 3 SiC 2 are observed. Higher microhardness was obtained in coatings subjected to annealing at 800 ◦ C, which can be explained by an increase in the content of carbonized titanium. As the annealing temperature rises further, the thickness of the oxide layer increases, leading to a decrease in the microhardness for the coatings annealed at 900 ◦ C. According to the results of tribological tests, formation of the oxide increases wear resistance of Ti 3 SiC 2 /TiC composite surface coatings.

About the Authors

D. B. Buitkenov
East-Kazakhstan State University
Kazakhstan


B. K. Rakhadilov
East-Kazakhstan State University
Kazakhstan


Zh. B. Sagdoldina
East-Kazakhstan State University
Kazakhstan


D. .. Erbolatuly
East-Kazakhstan State University
Kazakhstan


S. .. Amanzholov
East-Kazakhstan State University
Kazakhstan


References

1. Z.M. Sun et al., Acta Materialia 53 (2005) 4359-4366.

2. M.W. Barsoum et al., Unique New Carbide and Nitride Materials, American Scientist 89 (2001) 334-343.

3. N.I. Medvedeva et al., Zhurnal strukturnoi khimii 4(52) (2011) 806-822.

4. M. Barsoum, Progress in Solid State Chemistry 28 (2000) 201-281.

5. V.Yu. Ulianitsky et al., Spray Technol 20 (2011) 791-801.

6. V.Yu.Ulianitsky et al., Journal of Thermal Spray Technology 20 (2011) 791-801.

7. V.E. Oliker et al., Surface and Coatings Technology 200 (2006) 3573-3581.

8. C. Senderowski et al., Intermetallics 18 (2010) 1405-1409.

9. D.V. Dudina et al., Ceramics International 40 (2014) 3253-3260.

10. B.K. Rahadilov et al., Tribologia 1 (2019) 49-55.

11. M. Skakov et al., Bulletin of KazNTU 3(103) (2014) 65-71.

12. Y. Zhou, Z. Metallkd 1(95) (2004) 50-56.

13. M.W. Barsoum: Prog. Solid St. Chem. 28(1-4) (2000) 201-281.

14. M.W. Barsoum et al., Interceram. 49(4) (2000) 226.

15. Z.F. Zhang et al., J. of Alloys and Compounds (2003) 352:283.

16. Siddhartha et al., Materials and Design 32 (2011) 615-627.

17. B.K. Rakhadilov et al., Materials testing 4(61) (2019) 304-308

18. M.A. Caravaca et al., Journal of the European Ceramic Society 34 (2014) 3791-3800.

19. D.B. Buitkenov et al., Key Engineering Materials 821 (2019) 301-306.

20. B.K. Rakhadilov et al., International Trends in Science and Technology (2019) 28-32.


Review

For citations:


Buitkenov D.B., Rakhadilov B.K., Sagdoldina Zh.B., Erbolatuly D..., Amanzholov S... Reserach of the mechanic-tribological characteristics of Ti3SiC2/TiC coatings after annealing. Eurasian Journal of Physics and Functional Materials. 2020;4(1):86-92. https://doi.org/10.29317/ejpfm.2020040109

Views: 462


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2522-9869 (Print)
ISSN 2616-8537 (Online)