Preview

Super–protonic conductors for solid acid fuel cells (SAFCs): a review

https://doi.org/10.32523/ejpfm.2023070101

Abstract

Fuel cell holds the promise of being environmentally friendly and becomes one of the alternatives for renewable energy. Solid acids have super–protonic behavior which allows them to become conductors. It can function at high temperatures. Hydration, on the other hand, may be used to improve the performance of the solid acid. Moreover, the conductivity, stability, and crystal structure of the solid acid compounds of the fuel cell are all influenced by the size of the electrolyte membrane. Very few works have been done on solid acid fuel cells which are still under investigation to make it one viable as well as a reliable alternative to clean, renewable energy. In general, this work will provide an overview of the variables or characteristics that affect the technical effectiveness and performance of the unique super–protonic conductors for solid acid fuel cells.

About the Authors

Sh. Afroze
L.N. Gumilyov Eurasian National University; Faculty of Integrated Technologies, Universiti Brunei Darussalam
Kazakhstan

Astana



Md S. Reza
L.N. Gumilyov Eurasian National University; Faculty of Integrated Technologies, Universiti Brunei Darussalam
Kazakhstan

Astana



M.R. Somalu
Fuel Cell Institute, Universiti Kebangsaan Malaysia
Malaysia

Selangor



A.K. Azad
Faculty of Integrated Technologies, Universiti Brunei Darussalam
Brunei Darussalam

Bandar Seri Begawan



References

1. Shammya Afroze et al., Int. J. Integr. Eng. 12 (2020) 245–256.

2. A.V. Nikonov et al., Eurasian J. Phys. Funct. Mater. 2 (2018) 274–292.

3. P. Duffy et al., in: Issues Environ. Sci. Technol., Royal Society of Chemistry (2019) 1–41.

4. M.S. Reza et al., Chem. Eng. Technol. 46(3) (2022) 420–434.

5. C. Zou et al., Nat. Gas Ind. B 3 (2016) 1–11.

6. L.A. Omeiza et al., Energies 16(4) (2023) 1876.

7. M. Beigzadeh et al., J. Clean. Prod. 280 (2021) 124383.

8. M.S. Reza et al., Arab J. Basic Appl. Sci. 27 (2020) 208–238.

9. Z.H. Lee et al., Renew. Sustain. Energy Rev. 28 (2013) 71–81.

10. W.H. Liew et al., J. Clean. Prod. 71 (2014) 11–29.

11. M.S. Reza et al., Sustainability 15 (2023) 1643.

12. M.S. Reza et al., Sustainability 14 (2022) 1203.

13. T.-Y. Lin et al., Gas Sci. Eng. 110 (2023) 204902.

14. S. Sabzpoushan et al., Energy Sci. Eng. 8 (2020) 3575–3587.

15. European Parliament, Directorate-General for Parliamentary Research Services et al., Towards a circular economy: waste management in the EU, European Parliament (2018).

16. S. Manafi et al., J. Nanomater. 2012 (2012) 803546.

17. M.S. Reza et al., Energy, Ecol. Environ. 5 (2020) 118–133.

18. J. Rissman et al., Appl. Energy 266 (2020) 114848.

19. S. Afroze et al., IET Conf. Publ., Institution of Engineering and Technology (2018) 4 p.

20. H. Forootan Fard et al., Int. J. Hydrogen Energy 45 (2020) 25307–25316.

21. M. Beigzadeh et al., Appl. Therm. Eng. 166 (2020) 114707.

22. M.A. Hannan et al., Int. J. Hydrogen Energy 47 (2022) 39523–39548.

23. M.J.B. Kabeyi et al., Front. Energy Res. 9 (2022) 1–45.

24. F. Wu et al., Chem. Soc. Rev. 49 (2020) 1569–1614.

25. M. Ma et al., Mater. Chem. Front. (2023).

26. C.D. Reynolds et al., Mater. Des. 209 (2021) 109971.

27. J. Lin et al., Energy Environ. Mater. 5 (2022) 133–156.

28. C. Xiong et al., SmartMat 4 (2023) 1–36.

29. A. Afif et al., J. Energy Storage 25 (2019) 100852.

30. S. Afroze et al., Int. J. Hydrogen Energy (2022).

31. T.H. Lee et al., J. Power Sources 331 (2016) 495–506.

32. A.V. Nikonov et al., J. Alloys Compd. 865 (2021) 158898.

33. S. Tada et al., Int. J. Hydrogen Energy 44 (2019) 26545–26553.

34. X.R. Wang et al., Int. J. Hydrogen Energy 46 (2021) 12206–12229.

35. S. Cavaliere et al., Energy Environ. Sci. 4 (2011) 4761–4785.

36. K. Sharma et al., J. Energy Storage 21 (2019) 801–825.

37. A.M. Abdalla et al., Front. Energy 14 (2018) 359–382.

38. R. Borah et al., Mater. Today Adv. 6 (2020) 100046.

39. R.T. Yadlapalli et al., J. Energy Storage 49 (2022) 104194.

40. B.C.H. Steele et al., Nature 414 (2001) 345–352.

41. M.A. Abdelkareem et al., J. Sci. Adv. Mater. Devices 7 (2022) 100465.

42. M.-R. Gao et al., Chem. Soc. Rev. 42 (2013) 2986–3017.

43. S.K. Dash et al., Sustainability 14 (2022) 8285.

44. W. Apollon et al., Biomass and Bioenergy 148 (2021) 106028.

45. G. Shen et al., Nat. Commun. 11 (2020) 1–10.

46. M.K. Debe et al., Nature 486 (2012) 43–51.

47. SAFCell - Solid Acid Fuel Cells convert fuel into electricity.

48. S. Afroze et al., Front. Energy 13 (2019) 770–797.

49. S. Afroze et al., Ceramics International 47 (2021) 541–546.

50. S. Afroze et al., Mater. Lett. 261 (2020) 127126.

51. S. Afroze et al., Int. J. Integr. Eng. 12 (2020) 245–256.

52. L. Xing et al., Energy 177 (2019) 445–464.

53. K. Vignarooban et al., Chinese J. Catal. 36 (2015) 458–472.

54. J. Millichamp et al., J. Power Sources 284 (2015) 305–320.

55. K.A. Kuterbekov et al., Eurasian J. Phys. Funct. Mater. 1 (2017) 48–51.

56. Y.M.A. Welaya et al., Int. J. Nav. Archit. Ocean Eng. 3 (2011) 141–149.

57. S. Mekhilef et al., Renew. Sustain. Energy Rev. 16 (2012) 981–989.

58. N. Radenahmad et al., Renew. Sustain. Energy Rev. 57 (2016) 1347–1358.

59. S.M. Haile et al., Mater. Today 6 (2003) 24–29.

60. Y. Manoharan et al., Appl. Sci. 9 (2019).

61. S.M.H. Rahman, Synthesis, Structure and Proton Conduction of Substituted BaTiO3 and BaZrO3 Perovskites (Chalmers University of Technology, 2013)

62. Collecting the History of Proton Exchange Membrane Fuel Cells.

63. R. Omrani et al., Int. J. Energy Res. 43 (2019) 7496–7507.

64. I. Dincer et al., Int. J. Energy Res. 31 (2007) 29–55.

65. B. Yang et al., Mater. Res. Bull. 38 (2003) 691–698.

66. S.M. Haile et al., Nature 410 (2001) 910–913.

67. A.G. Olabi et al., Energy 214 (2020) 118955.

68. F. Wang et al., Appl. Energy 275 (2020) 115342.

69. BEHAVIOUR OF ACIDS, ALKALIS AND SALTS, in: Abridged Science for High School Students 2 (1966) 26-1–26–10.

70. S.D. Priya et al., J. Electrochem. Sci. Technol. 11 (2020) 99–116.

71. J.B. Goodenough et al., J. Power Sources 173 (2007) 1–10.

72. R.N. Basu et al., Recent Trends Fuel Cell Sci. Technol. (2007) 286–331.

73. Fuel Cells.

74. E. Ogungbemi et al., Energy 172 (2019) 155–172.

75. N.H. Jawad et al., Sustainability 14 (2022) 14653.

76. H.S. Thiam et al., Int. J. Hydrogen Energy 36 (2011) 3187–3205.

77. H. Yu et al., Ref. Modul. Mater. Sci. Mater. Eng. (2016) 1–15.

78. K. Joon et al., J. Power Sources 61 (1996) 129–133.

79. J. Garche and L. Jorissen, Electrochem. Soc. Interface (2015) 39–43.

80. R. Mucke et al., J. Am. Ceram. Soc. 92 (2009) S95–S102.

81. M. Liang et al., Chem. Eng. J. 420 (2021) 127717.

82. A.K. Azad et al., Sci. Rep. 11 (2021) 19382.

83. A. Dubois et al., J. Power Sources 369 (2017) 65–77.

84. C.R.I. Chisholm et al., Electrochem. Soc. Interface 18 (2009) 53–59.

85. J. Wang et al., Engineering 4 (2018) 352–360.

86. O. Gonzalez-Espasandin et al., Sci. World J. 2014 (2014) 497642.

87. T. Norby et al., Nature 410 (2001) 877–878.

88. S.M. Haile et al., Faraday Discuss. 134 (2007) 17-39.

89. C. Yang et al., J. Power Sources 103 (2001) 1–9.

90. G.P. Pez et al., European Patent (2007).

91. Wing Kee Chan et al., Structure and Dynamics of Hydrogen in Nanocomposite Solid Acids for Fuel Cell Applications (Delft University of Technology, 2011).

92. N. Mohammad et al., Malaysian J. Anal. Sci. 20 (2016) 633–641.

93. S. Afroze et al., Int. J. Chem. Eng. 2021 (2021) 5539048.

94. D.A. Boysen et al., Science 303 (2004) 68–70.

95. A.C. Dupuis et al., Prog. Mater. Sci. 56 (2011) 289–327.

96. E. Rapoport et al., J. Solid State Chem. 24 (1978) 423–433.

97. B. Metcalfe et al., Thermochim. Acta Acta, 24 (1978) 149–153.

98. L.C. Gupta et al., Thermochim. Acta 42 (1980) 85–90.

99. A.I. Baranov et al., Ferroelectrics 81 (1988) 183–186.

100. C.R.I. Chisholm, Superprotonic Phase Transitions in Solid Acids: Parameters affecting the presence and stability of superprotonic transitions in the MHnXO4 family of compounds (X=S, Se, P, As; M=Li, Na, K, NH4, Rb, Cs) (California Institute of Technology, 2003)

101. A.I. Baranov et al., Solid State Ionics 176 (2005) 2871–2874.

102. V. V. Martsinkevich et al., Solid State Ionics 225 (2012) 236–240.

103. S.M. Gadzhiev et al., Russ. J. Electrochem. 45 (2009) 215–220.

104. A. Corma et al., Chem. Rev. 95 (1995) 559–614.

105. X. Glipa et al., Solid State Ionics 97 (1997) 227–232.

106. T. Uma et al., Chem. Mater. 19 (2007) 3604–3610.

107. V.G. Ponomareva et al., Russ. J. Inorg. Chem. 51 (2006) 343–346.

108. C. Sun et al., Electrochim. Acta 53 (2008) 6417–6422.

109. C.D. Zangmeister et al., J. Solid State Chem. 180 (2007) 1826–1831.

110. E. Ortiz et al., J. Phys. Condens. Matter 18 (2006) 9561–9573.

111. C.R.I. Chisholm et al., Solid State Ionics 136–137 (2000) 229–241.

112. C.R.I. Chisholm et al., Acta Crystallogr. Sect. B Struct. Sci. 55 (1999) 937–946.

113. S.M. Haile et al., Solid State Ionics 77 (1995) 128–134.

114. B.V. Merinov et al., Phys. Chem. Chem. Phys. 23 (2021) 17026–17032.

115. W. Munch et al., Solid State Ionics 77 (1995) 10–14.

116. P. Zetterstrom et al., Solid State Ionics 116 (1999) 321–329.

117. N. Agmon et al., Chem. Phys. Lett. 244 (1995) 456–462.

118. S. Cukierman et al., Biochim. Biophys. Acta - Bioenerg. 1757 (2006) 876–885.

119. E.J. Murphy et al., J. Appl. Phys. 35 (1964) 2609–2614.

120. J.M. Pollock et al., J. Chem. Phys. 51 (1969) 3608–3614.

121. M. O’Keeffe et al., J. Phys. Chem. Solids 28 (1967) 211–218.

122. T. Dippel et al., Solid State Ionics 46 (1991) 3–9.

123. K.D. Kreuer et al., Berichte Der Bunsengesellschaft Fur Phys. Chemie 96 (1992) 1736–1742.

124. X. Guo et al., Int. J. Hydrogen Energy 38 (2013) 16387–16393.

125. Y. Matsuo et al., Solid State Commun. 130 (2004) 411–414.

126. T. Matsui et al., J. Power Sources 196 (2011) 9445–9450.

127. G.V. Lavrova et al., Solid State Ionics 179 (2008) 1170–1173.

128. P. Bocchetta et al., Electrochem. Commun. 6 (2004) 923–928.

129. G. Qing et al., J. Appl. Electrochem. 47 (2017) 803–814.

130. A.B. Papandrew et al., Chem. Mater. 23 (2011) 1659–1667.

131. D.K. Lim et al., Electrochim. Acta 288 (2018) 12–19.

132. D.C. Orozco et al., J. Power Sources 408 (2018) 7–16.

133. Y.K. Taninouchi et al., J. Mater. Chem. 17 (2007) 3182–3189.

134. A. Cholewinski et al., Polymers (Basel). 13 (2021) 1–20.

135. H. Elsayed et al., Ceram. Int. 46 (2020) 25299–25305.

136. F. Maglia et al., J. Mater. Res. 27 (2012) 1975–1981.

137. T. Xiao et al., Prog. Nat. Sci. Mater. Int. 30 (2020) 743–750.

138. I.M. Hung et al., J. Eur. Ceram. Soc. 35 (2015) 163–170.

139. T. Miyake et al., J. Phys. Condens. Matter 28 (2016) 23001.

140. R. Annapragada et al., Inorganica Chim. Acta 546 (2023) 121304.

141. B. Liu et al., Chem. Sci. 10 (2019) 556–563.

142. A. Gorre et al., J. Macromol. Sci. Part A Pure Appl. Chem. 60 (2022) 38–50.

143. W. Zhou et al., Solid State Ionics 179 (2008) 380–384.

144. T.H.E. Lewis et al., Defin. ACIDS BASES 1810 (1943) 51–57.

145. P. Gupta et al., Catal. Today 236 (2014) 153–170.

146. Y. Chen et al., Nat. Chem. 2 (2010) 503–508.

147. M.A. Hickner et al., Chem. Rev. 104 (2004) 4587–4611.

148. A.I. Baranov et al., J. Exp. Theor. Phys. Lett. 36 (1982) 459.

149. Y. Yamane et al., Solid State Ionics 179 (2008) 483–488.

150. W. Zhou et al., Solid State Ionics 179 (2008) 380–384.

151. S. Hayashi et al., Solid State Ionics 171 (2004) 289–293.

152. Y. Li et al., Sci. Rep. 7 (2017) 1–10.

153. B. V. Tilak et al., Electroanal. Chem. Interfacial Electrochem. 48 (1973) 1–23.

154. T. Uda et al., Electrochem. Solid-State Lett. 8 (2005) A245–A246.

155. A.S. Bondarenko et al., J. Power Sources 194 (2009) 843–846.

156. Z. Jiraak et al., Phys. Status Solidi 100 (1987) K117–K122.

157. D.A. Boysen et al., Science 303 (2004) 68–70.


Review

For citations:


Afroze Sh., Reza M., Somalu M., Azad A. Super–protonic conductors for solid acid fuel cells (SAFCs): a review. Eurasian Journal of Physics and Functional Materials. 2023;7(1):6-37. https://doi.org/10.32523/ejpfm.2023070101

Views: 969


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2522-9869 (Print)
ISSN 2616-8537 (Online)