Preview

Eurasian Journal of Physics and Functional Materials

Advanced search

Thermal and electrical properties of nanocrystalline superionic NaxCu1.75S (x=0.1, 0.15, 0.2, 25) compounds

https://doi.org/10.32523/ejpfm.2023070105

Abstract

The paper presents the results of the studies of thermal properties of nanocrystalline superionic NaxCu1.75S (x = 0.1, 0.15, 0.2, 25) compositions, and preliminary results of Na0.1Cu1.75S using as energy stored cathode material in Na-ion half-cell with NaPF6 electrolyte and Na anode. The compositions contain a few copper sulfide phases: monoclinic chalcocite Cu2S, orthorhombic anilite Cu1.75S, triclinic roxbyite Cu1.74÷1.82S, also the compositions can contain monoclinic Na2Cu4S3, orthorhombic Na2S, cubic Cu2O as inclusion phases. The sizes of powder particles lie in the range from 10 to 113 nm. Differential scanning calorimetry revealed in Na0.1Cu1.75S the endothermic thermal effects with critical temperatures near 123 oC, 422 oC and 442 oC, caused by structural transitions in copper sulfide. Fourth endothermic peak at 323 oC presumably belongs to Na2S phase. The minimum for the Fermi level at about 420°C is found with using of the e.m.f. E of the electrochemical cell of the Cu/CuBr/Na0.10Cu1.75S/Pt, which corresponds to minimum for the carrier concentration. This conclusion correlates well with the observed conductivity minimum at about 410°C. Electrode material Na0.10Cu1.75S achieved a significant specific energy density 146.5 mAh/g in half-cell assembled from the cathode active material, electrolyte (NaPF6 in 0.5 mol PC) and Na anode. 

About the Authors

M.M. Kubenova
L.N. Gumilyov Eurasian National University
Kazakhstan

Astana



K.A. Kuterbekov
L.N. Gumilyov Eurasian National University
Kazakhstan

Astana



M.Kh. Balapanov
Bashkir State University
Russian Federation

Ufa



R.Kh. Ishembetov
Bashkir State University
Russian Federation

Ufa



B.M. Akhmetgaliev
Bashkir State University
Russian Federation

Ufa



A.M. Kabyshev
L.N. Gumilyov Eurasian National University
Kazakhstan

Astana



K.Zh. Bekmyrza
L.N. Gumilyov Eurasian National University
Kazakhstan

Astana



M.Kh. Zeleev
Bashkir State Medical University
Russian Federation

Ufa



R.Sh. Palymbetov
L.N. Gumilyov Eurasian National University
Kazakhstan

Astana



B.U. Baikhozhaeva
L.N. Gumilyov Eurasian National University
Kazakhstan

Astana



References

1. G. Lakhotiya et al., Current Applied Physics 19(4) (2019) 394-399.

2. X. Shuai et al., Nanoscale Research Letters 9 (2014) 513.

3. T. Tamura et al., Journal of Physics: Conference Series 61 (2007) 1157-1161.

4. F. Capezzuto et al., Composite Structures 92 (2010) 1913-1919.

5. J. Xu et al., Adv. Funct. Mater. 19 (2009) 1759-1766.

6. M.B. Muradov et al., Surface Engineering and Applied Electrochemistry 43 (2007) 512-515.

7. C. Coughlan et al., Chem. Rev. 117(9) (2017) 5865-6109.

8. S. Li et al., ACS Catalysis 12(15) (2022) 9074-9082.

9. N. Manivelan et al., ACS Applied Materials & Interfaces 14(27) (2022) 30812-30823.

10. Y. Zhao et al., ACS Biomaterials Science & Engineering 6(9) (2020) 4799-4815.

11. F.F. Jaldurgam et al., Nanomaterials 11(4) (2021) 895.

12. M.M. Kubenova et al., Nanomaterials 11(9) (2021) 2238.

13. M.K. Balapanov et al., Eurasian Journal of Physics and Functional Materials 2(3) (2018) 231-241.

14. M.M. Kubenova et al., Eurasian Journal of Physics and Functional Materials 4(1) (2020) 67-85.

15. M.Kh. Balapanov et al., Vestnik Bashkirskogo Universiteta 24(4) (2019) 823-829. (in Russian)

16. Z.H. Ge et al., Advanced Energy Materials 6(16) (2016) 1600607.

17. Y. Zhang et al., Materials Science in Semiconductor Processing 107 (2020) 104848.

18. J.-S. Kim et al., Journal of Power Sources 189 (2009) 864-868.

19. J.-L. Yue et al., Chem. Commun. 49 (2013) 5868-5870.

20. Yutao Jiang et al., CrystEngComm 24 (2022) 3355-3362.

21. H. Park et al., Crystal Growth & Design 20(5) (2020) 3325-3333.

22. H. Li et al., Small structures 2(8) (2021) 2100035.

23. R. Lu et al., Journal of Physics D: Applied Physics 55(33) 334001.

24. M.Kh. Balapanov et al., Ionics 24(5) (2018) 1349-1356.

25. K.A. Kuterbekov et al., Ionics 28 (2022) 4311-4319.

26. W. Weppner et al., Annual Review of Materials Science 8 (1978) 269-311.

27. I. Yokota, J. Phys. Soc. Jpn. 16 (1961) 2213-2223.

28. C. Wagner, Progr. in Sol. Chem. Phys. 7 (1972) 1-37.

29. D.J. Chakrabarti et al., Bulletin of Alloy Phase Diagrams 4 (1983) 254-271.

30. F. Gronvold et al., J. Chem. Thermodyn. 19 (1987) 1183-1198.

31. E.K. Ovechkin et al., J. Inorganic Chem. 16(11) (1971) 1672-1674.

32. S. Miyatani, J. Phys. Soc. Jpn. 34 (1973) 422-432.

33. M.M. Kubenova et al., IOP Conference Series: Material Science and Engineering 447 (2018) 012031.

34. G.P. Sorokin et al., Izvestiya Vuzov. Fizika (USSR) 5 (1966) 91-95. (In Russian


Review

For citations:


Kubenova M., Kuterbekov K., Balapanov M., Ishembetov R., Akhmetgaliev B., Kabyshev A., Bekmyrza K., Zeleev M., Palymbetov R., Baikhozhaeva B. Thermal and electrical properties of nanocrystalline superionic NaxCu1.75S (x=0.1, 0.15, 0.2, 25) compounds. Eurasian Journal of Physics and Functional Materials. 2023;7(1):60-72. https://doi.org/10.32523/ejpfm.2023070105

Views: 595


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2522-9869 (Print)
ISSN 2616-8537 (Online)