Preview

Eurasian Journal of Physics and Functional Materials

Advanced search

Investigation of the applicability of post-irradiation annealing to reduce the degree of disorder in AlN ceramic to proton irradiation

https://doi.org/10.29317/ejpfm.2020040403

Abstract

The work presents study results of the applicability of high-temperature heat treatment (500-700°C) of nitride ceramics irradiated with protons with an energy of 1.5 MeV and a dose of 10 16 cm 􀀀2 . It was found that heat treatment for 60 minutes at a temperature of 700°C allows us to significantly reduce the density of radiation-induced defects and distortions in ceramics structure due to partial annihilation and relaxation of point defects. Dependences of changes in the strength and mechanical characteristics of ceramics on the temperature of post-irradiation annealing are shown. Based on the data obtained, a conclusion was made about prospects of using post-irradiation annealing to maintain the strength of ceramics subjected to loading during operation.

About the Author

A. L. Kozlovskiy
L.N. Gumilyov Eurasian National University; The Institute of Nuclear Physics
Kazakhstan


References

1. W. Dienst, Journal of nuclear materials 191 (1992) 555-559.

2. Azevedo Cesar Roberto de Farias. Engineering Failure Analysis 18(8) (2011) 1943-1962.

3. B. Jean-Pierre et al., MRS bulletin 34(1) (2009) 28-34.

4. K. Tinishbaeva et al., Journal of Materials Science: Materials in Electronics 31(3) (2020) 2246-2256.

5. T. Yano et al., Journal of nuclear materials 283 (2000) 947-951.

6. Zhang Yongfeng, Xian-Ming Bai, JOM 71(12) (2019) 4806-4807.

7. Ang, Caen, Lance Snead, and Yutai Kato, Journal of Nuclear Materials (2020) 151987.

8. D.L. Smith et al., Fusion Engineering and Design 61 (2002) 629-641.

9. M. Khafizov et al., Journal of Materials Research 32(1) (2017) 204-216.

10. Q. U. A. N. L. I. Hu et al., Radiation effects and defects in solids 147(4) (1999) 283-292.

11. Z. Rosenberg, N.S. Brar, S.J. Bless, Journal of applied physics 70(1) (1991) 167-171.

12. S.J. Zinkle, Structural Materials for Generation IV Nuclear Reactors. Woodhead Publishing, 2017. 569-594.

13. T. Wubian, MAX Phases and Ultra-High Temperature Ceramics for Extreme Envir onments. IGI Global, 2013. 460- 477.

14. Yano, Toyohiko and Takayoshi Iseki, Journal of nuclear materials 179 (1991) 387-390.

15. T. Gladkikh et al., Vacuum 161 (2019) 103-110.

16. A. Kozlovskiy et al., Vacuum 163 (2019) 45-51.

17. K. Dukenbayev et al., Journal of Materials Science: Materials in Electronics 30(9) (2019) 8777-8787.

18. T. Yano et al., Journal of nuclear materials 283 (2000) 947-951.

19. A. Kozlovskiy et al., Materials 12(15) (2019) 2415.

20. Han Xiao, Xiguang Gao and Yingdong Song, Materials Science and Engineering: A 746 (2019) 94-104.

21. A.S. Vokhmintsev, I.A. Weinstein and D.M. Spiridonov, Journal of luminescence 132(8) (2012) 2109-2113.

22. Hu Quanli et al., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 191(1-4) (2002) 536-539.

23. Ya. Takayuki et al., Journal of the Ceramic Society of Japan 121(1420) (2013) 988-991.

24. L. Trinkler et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 580(1) (2007) 354-357.

25. Ya. Toyohiko, T. Iseki, Journal of nuclear materials 203(3) (1993) 249-254.

26. M. Akiyoshi et al., Journal of nuclear materials 329 (2004) 1466-1470.

27. W. Dienst, Journal of nuclear materials 191 (1992) 555-559.

28. T. Yano et al., Journal of nuclear materials 283 (2000) 947-951.

29. M. Milosavljevic et al., Journal of Physics D: Applied Physics 43(6) (2010)065302.

30. S.O. Kucheyev et al., Journal of applied physics 92(7) (2002) 3554-3558.

31. S.J. Zinkle, V.A. Skuratov, and D.T. Hoelzer, Nuclear Instruments and Methods in Physics Research section B: Beam Interactions with Materials and Atoms 191(1-4) (2002) 758-766.

32. Hu Xinwen et al., IEEE Transactions on Nuclear Science 50(6) (2003) 1791-1796.

33. Z. Qiaoying, M.O. Manasreh, Applied physics letters 80(12) (2002) 2072-2074.

34. A.L. Kozlovskiy et al., Solid State Sciences (2020) 106367.

35. A.L. Kozlovskiy et al., Crystals 10(6) (2020) 546.

36. Yu.F. Zhukovskii et al., Journal of Physics: Condensed Matter 19(39) (2007) 395021.

37. A. Kozo, M. Okada, and M. Nakagawa, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 166 (2000) 57-63.

38. A. Kozo et al., Japanese journal of applied physics 29(1R) (1990) 150.

39. E.A. Kotomin et al., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 374 (2016) 107-110.

40. E. Kotomin et al., The Journal of Physical Chemistry A 122(1) (2018) 28-32.

41. A.I. Popov et al., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 433 (2018) 93-97.

42. L.L. Snead, S.J. Zinkle and D.P. White, Journal of nuclear materials 340(2-3) (2005) 187-202.

43. A.I. Popov, I. Plavina, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 101(3) (1995) 252-254.

44. Soni Anuj et al., Radiation measurements 47(2) (2012) 111-120.

45. A. Vokhmintsev, I. Weinstein, D. Spiridonov, Physica status solidi c, 10(3) (2013) 457-460.

46. A. Kozlovskiy et al., Journal of Materials Science: Materials in Electronics 31 (2020) 11227-11237.

47. W.J. Weber, Y. Zhang, Current Opinion in Solid State and Materials Science 23(4) (2019) 100757.

48. J.F. Ziegler, J.P. Biersack, M.D. Ziegler, SRIM: http://www. srim. org (2009).

49. E.H. Lee, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 151(1-4) (1999) 29-41.

50. Z.A. Khorsand et al., Solid State Sciences 13(1) (2011) 251-256.

51. A. Kozlovskiy et al., Vacuum 155 (2018) 412-422.

52. Shenzhen Jia Rifeng Tai Electronic Technology. http://www.jrftdz.com/en/alnsicceramic/85-104.

53. D.B. Borgekov et al., Crystals 10(4) (2020) 254.

54. Taniyasu Yoshitaka, Makoto Kasu, and Naoki Kobayashi, Applied Physics Letters 79(26) (2001) 4351-4353.

55. C. Ascheron et al., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 28(3) (1987) 350-359.

56. R.A. Khmelnitskiy et al., Vacuum 78(2-4) (2005) 273-279.

57. A.S. Bakai, Materials Science Forum 123 (1993) Trans Tech Publications Ltd.

58. E. Feldman, N. Kalugina, O. Chesnokova, Mining of Mineral Deposits 11(2) (2017) 41-45.

59. D. Gerlich, S.L. Dole, G.A. Slack, Journal of Physics and Chemistry of Solids 47(5) (1986) 437-441.

60. V.V. Uglov et al., Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques 14 (2020) 359-365.

61. V.V. Uglov et al., Surface and Coatings Technology 344 (2018) 170-176.

62. K.K. Kadyrzhanov, K. Tinishbaeva and V.V. Uglov, Eurasian Phys. Techn. J. 17(33) (2020) 46-53.

63. Van Laarhoven, J.M. Peter, E.H.L. Aarts, Simulated annealing: Theory and applications. Springer, Dordrecht, 1987. 7-15.

64. T. Yano et al., Journal of nuclear materials 440(1-3) (2013) 495-499.

65. T. Yano, H. Miyazaki, and T. Iseki, Journal of nuclear materials 230(1) (1996) 74-77.

66. T. Pornphatdetaudom, T. Yano, and K. Yoshida, Nuclear Materials and Energy 16 (2018) 24-28.


Review

For citations:


Kozlovskiy A.L. Investigation of the applicability of post-irradiation annealing to reduce the degree of disorder in AlN ceramic to proton irradiation. Eurasian Journal of Physics and Functional Materials. 2020;4(4):291-308. https://doi.org/10.29317/ejpfm.2020040403

Views: 391


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2522-9869 (Print)
ISSN 2616-8537 (Online)