Compact and sustainable electronic module for silicon photodetectors
Abstract
This article presents the development of a cost-effective and efficient electronic module for silicon photodetectors (SiPM). The electronic module combines essential functionalities, such as a high voltage power supply, a preamplifier, and a signal comparator, into a compact circuit. A high voltage power supply with a range of 30 to 140 V provides a stable bias voltage with 0.01 V accuracy, while a preamplifier with 40 gain and 250 MHz bandwidth enables signal amplification necessary to extract weak signals. The comparator converts an analogue signal (higher than 8 mV) into TTL (transistor-transistor logic), which makes it easy to process and analyze with digital devices such as microcontrollers or make it possible to send signals over long distances by a cable. The module has been tested using an LYSO scintillator and a silicon photomultiplier (SiPM) called a micropixel avalanche photodiode (MAPD). It provides a more effective and efficient solution for reading out signals from SiPMs in a variety of applications, delivering reliable and accurate results in real-time.
About the Authors
A. SadigovAzerbaijan
Baku
S. Nuruyev
Azerbaijan
Baku
R. Akbarov
Azerbaijan
Baku
D. B. Berikov
Russian Federation
Dubna
A. Madadzada
Azerbaijan
Baku
A. Mammadli
Azerbaijan
Baku
S. Lyubchyk
Portugal
Lisboa
E. Yilmaz
Turkey
Bolu
References
1. Z. Sadygov et al., Phys. Part. Nucl. Lett. 17, (2020) 160-176. .
2. Z. Sadygov et al., Phys. Part. Nucl. Lett. 10, (2014) 780-782. .
3. S. Nuruyev et al., Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 912 (2018) 320-322. .
4. F. Ahmadov et al., JINST 17 (2022) C01001.
5. A. Sadigov et al., JINST 17 (2022) P07021.
6. S. Nuruyev et al., JINST 15 (2020) C03003.
7. A. Sadigov et al., Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 824 (2016) 135-136.
8. A. Sadigov et al., Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 824 (2016) 137-138.
9. F. Ahmadov et al., Funct. Mater. 24 (2017) 341-344.
10. F. Ahmadov et al., Phys. Part.Nucl. Lett. 10 (2013) 778-779.
11. G. Ahmadov et al., JINST 16 (2021) P07020.
12. R.A. Akbarov et al., JINST 15 (2020) C01001.
13. Dennis R Schaart, Phys. Med. Biol. 66 (2021) 09TR01.
14. M. Ablikim et al., Phys. Rev. D 103 (2021) 112007.
15. R. Akbarov et al., Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 936 (2019) 549-551.
16. F. Simon, Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 926 (2019) 85-100.
17. M. Casolino et al., Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 986 (2021) 164649.
18. Zh. Xie et al., Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 1009 (2021) 165459.
19. A.A. Nabiyev et al., Nanomaterials 11 (2021) 2673.
20. A.A. Nabiyev et al., Polymer Degradation and Stability 171 (2020) 109042.
21. S. Surti, Joel S. Karp, Phys. Med. 32 (2016) 12-22.
22. F. Ahmadov et al., JINST 12 (2017) C01003.
23. M. Holik et al., Scientific Reports 12 (2022) 15855.
24. M. Holik et al., JINST 18 (2023) C01015.
Review
For citations:
Sadigov A., Nuruyev S., Akbarov R., Berikov D.B., Madadzada A., Mammadli A., Lyubchyk S., Yilmaz E. Compact and sustainable electronic module for silicon photodetectors. Eurasian Journal of Physics and Functional Materials. 2023;7(3):148-154. https://doi.org/10.32523/ejpfm.2023070302