Preview

Computational scheme for breakup of 11Be on light targets

https://doi.org/10.32523/ejpfm.2023070303

Abstract

We investigate the Coulomb breakup of the 11Be halo nuclei on a light (carbon) target within nonperturbative
time-dependent approach including the low-lying resonance 5/2+ of 11Be (E= 1.232 MeV). We had found considerable contribution of the low-lying resonances ( 5/2+ , 3/2 and 3/2+ ) to the breakup cross section of 11Be on a heavy (208Pb) target at our previous calculations. The developed computational scheme is extended to study the breakup of 11Be on a light target. This work is the initial step, where the convergence and accuracy of the computational scheme is tested.

About the Authors

D. S. Valiolda
Joint Institute for Nuclear Research; Al-Farabi Kazakh National University; Institute of Nuclear Physics
Russian Federation

Dubna



D. M. Janseitov
Joint Institute for Nuclear Research; Institute of Nuclear Physics; L.N.Gumilyov Eurasian National University
Russian Federation

Dubna



V.S. Melezhik
Joint Institute for Nuclear Research; Dubna State University
Russian Federation

Dubna



References

1. I. Tanihata, J. Phys. G 22 (1996) 157.

2. J. Al-Khalili, An introduction to halo nuclei. Chapter in Lecture Notes in Physics (2004).

3. Y. Suzuki et al., Structure and Reactions of Light Exotic Nuclei (Taylor & Francis, London, 2003) 608 p.

4. M. Kamimura et al., Prog. Theor. Phys. Suppl. 89 (1986) 1–10.

5. P.G. Hansen, B. Jonson, Europhysics Letters 4 (1987) 409.

6. A.Di Pietro et al., Phys. Rev. C 50 (2012) 054607 (2012).

7. N. Fukuda et al., Phys. Rev. C 70 (2004) 054606.

8. T. Aumann et al., Phys. Rev. Lett 84 (2000) 35.

9. K.T. Schmitt et al., Phys. Rev. Lett 108 (2012) 192701.

10. N. Austern et al., Phys. Rep. 154 (1987) 125.

11. R. de Diego et al., Phys. Rev. C 89 (2014) 064609.

12. D. Valiolda et al., European Physical Journal A 58 (2022) 34.

13. V.S. Melezhik, D. Baye, Phys. Rev. C 59 (1999) 3232.

14. P. Capel et al., Phys. Rev. C 68 (2003) 014612.

15. A.K. Azhibekov et al., Chin. J. Phys. 65 (2020) 292-299.

16. A.K. Azhibekov, V.V. Samarin, Bull. Russ. Acad. Sci.: Phys. 86(9) (2022) 1092-1098.

17. D. Baye et al., Phys. Rev. Lett. 95 (2005) 082502.

18. G. Goldstein et al., Phys. Rev. C 73 (2006) 024602. (2006)

19. T. Kido et al., Phys. Rev. C 50 (1994) R1276.

20. C.M. Perey, F.G. Perey, Atomic Data and Nuclear Data Tables 17 (1976) 1.

21. F.D. Bechetti, G.W. Greenless, Physical Review. 182 (1969) 1190.

22. B. Bonin et al., Nucl. Phys. A 445 (1985) 381.

23. J. Cook, Nucl. Phys. A 388 (1985) 153.

24. P. Capel et al., Phys. Rev. C 70 (2004) 064605.

25. J.S. Al-Khalili et al., Phys. Rev. C 55 (1997) R1018.

26. V. S. Melezhik, D. Baye, Phys. Rev. C 64 (2001) 054612.

27. V.S. Melezhik, Phys. Lett. A 230 (1997) 203.

28. D. Valiolda et al., Eurasian Journal of physics and functional materials 6 (2022) 165.

29. D. Valiolda et al., Physics of Particles and Nuclei Letters 19 (2022) 477.


Review

For citations:


Valiolda D.S., Janseitov D.M., Melezhik V. Computational scheme for breakup of 11Be on light targets. Eurasian Journal of Physics and Functional Materials. 2023;7(3):155-165. https://doi.org/10.32523/ejpfm.2023070303

Views: 416


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2522-9869 (Print)
ISSN 2616-8537 (Online)