Preview

Deformation-stimulated luminescence of a KBr crystal matrix

https://doi.org/10.32523/ejpfm.2023070306

Abstract

Radiative relaxations of electronic excitations - self-trapped excitons (STE) in regular lattice sites (intrinsic luminescence) and exciton-like formations (ELF) in the field of homologous cations (exciton-like luminescence). It has been found that the maximum effect of luminescence enhancement occurs upon uniaxial deformation along the <110> crystallographic direction (compared to <100>), which coincides with the direction of the self-trapped anion exciton (<110>) in the KBr crystal matrix. The exciton mechanism was estimated from the increase in the intensity of the intrinsic s(4, 42eV) - and p(2, 3eV) - luminescences of STE, and the enhancement of luminescence intensity of near-single Na+ (2.85 eV), pair ions Na+ , Na+ (3.1 eV) and Na+ Pb++ (3.4 eV)- centers - recombination mechanism of radiative relaxation of electronic excitations.

About the Authors

K. Shunkeyev
K. Zhubanov Aktobe Regional University
Kazakhstan

Aktobe



A. Tilep
K. Zhubanov Aktobe Regional University
Kazakhstan

Aktobe



Sh. Sagimbayeva
K. Zhubanov Aktobe Regional University
Kazakhstan

Aktobe



Zh. Ubaev
K. Zhubanov Aktobe Regional University
Kazakhstan

Aktobe



References

1. K.S. Song, R.T. Williams, Self-Trapped Excitons, (Berlin: Springer, 1996) 404 p.

2. Ch. Lushchik, A. Lushchik, Phys. Solid State 60 (2018) 1487–1505.

3. A. Lushchik et al., Low Temp. Phys. 44 (2018) 269–277.

4. C.J. Delbecq et al., Phys. Rev. 187 (1969) 1103–1119.

5. D. Schoemaker, J.L. Kolopus, Phys. Rev. B 2 (1970) 1148–1159.

6. M. Grinberg, J. Luminescence 131 (2011) 433–437.

7. W. Zhang et al., Science 342 (2013) 1502–1505.

8. K. Shunkeyev et al., Nucl. Instrum. Meth. B 509 (2021) 7–11.

9. K. Shunkeyev et al., Nucl. Instrum. Meth. B 528 (2022) 20–26.

10. K. Shunkeyev et al., Crystals 13 (2023) 364.

11. K. Shunkeyev et al., Low Temp. Phys. 45(2019) 1127–1130. [Fizika Nizkikh Temperatur, 45 (2019) 1323–1327]

12. K. Shunkeyev et al., Integrated Ferroelectrics 220 (2021) 140–146.

13. K. Shunkeyev et al., Low Temp. Phys. 42 (2016) 580–583. [Fizika Nizkikh Temperatur, 42 (2016) 738-742]

14. A. Biganeh et al., Jpn. Appl. Rad. and Iso. 166 (2020) 109330.

15. K. Shunkeyev et al., Lith. Jour. of Phys. 61 (2021) 151–160.

16. K. Shunkeyev et al., Eurasian Journal of Physical and Functional Materials 6(2) (2022) 139–150.

17. K. Shunkeyev et al., J. Phys.: Conf. Ser. 830 (2017) 012139.

18. K. Shunkeyev et al., J. Phys.: Conf. Ser. 400 (2012) 052032.

19. K.Sh. Shunkeyev et al., Registration method for spectra of thermally stimulated luminescence of alkali halide crystals. Invention Patent No 34978 RK dated 02.04.2021. (In Russian)

20. K.Sh. Shunkeyev et al., The method of synchronous registration of the time and spectral dependence of the intensity of tunnel luminescence of alkali-halide crystals. Utility model patent No 6563 RK dated 22.10.2021. (In Russian)

21. M. Ikezawa et al., J. Phys. Soc. Japan 23 (1967) 138–139.

22. D.W. Lunch, D.A. Robinson, Phys. Rev. 174 (1968) 1050–1059.

23. V.J. Grabovskis, I.K. Vitols, Journal of luminescence 20 (1979) 337–342.

24. C.J. Delbecq, Y. Toyozawa, P.H. Yuster, Phys. Rev. B 9 (1974) 4497–4505.


Review

For citations:


Shunkeyev K., Tilep A., Sagimbayeva Sh., Ubaev Zh. Deformation-stimulated luminescence of a KBr crystal matrix. Eurasian Journal of Physics and Functional Materials. 2023;7(3):185-196. https://doi.org/10.32523/ejpfm.2023070306

Views: 373


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2522-9869 (Print)
ISSN 2616-8537 (Online)