Thermal conductivity of new nanocomposite superionic semiconductors K0.01Cu1.96S, K0.02Cu1.95S, K0.03Cu1.94S, K0.04Cu1.93S, K0.05Cu1.94S
Abstract
In this work, we investigated the effect of nanostructuring on the thermoelectric and thermal properties of nonstoichiometric solid splavs doped with copper sulfides with potassium. The synthesized alloys K0.01Cu1.96S, K0.02Cu1.95S, K0.03Cu1.94S, K0.04Cu1.93S, K0.05Cu1.94S are nanocomposite. The crystallite sizes of the synthesized powder, as estimated from the half-width of X-ray diffraction lines, range from 7 to 180 nm. Sample K0.01Cu1.96S is a mixture of phases consisting of chalcocite Cu2S (82%), jarleite Cu1.96S (12%), anilite Cu1.75S (6%). The composition of samples K0.02Cu1.95S and K0.03Cu1.94S includes the most common phases of copper sulfides - chalcocite Cu2S , jarleite Cu1.96S, digenite Cu1.80S. Samples K0.04Cu1.93S and K0.05Cu1.94S consist of jarleite Cu1.96S, digenite Cu1.80S and potassium copper sulfide KCu4S3 phases. In a practical sense, the extremely low thermal conductivity values (from 0.16 to 0.80 W/m · K) found in the range of 300–700 K for nanocomposite samples K0.02Cu1.95S and K0.03Cu1.94S are very favorable for achieving high thermoelectric figure of merit ZT material.
About the Authors
M. M. KubenovaKazakhstan
Astana
M. Kh. Balapanov
Russian Federation
Ufa
R. Kh. Ishembetov
Russian Federation
Ufa
K. A. Kuterbekov
Kazakhstan
Astana
R. F. Almukhametov
Russian Federation
Ufa
K. Zh. Bekmyrza
Kazakhstan
Astana
A. M. Kabyshev
Kazakhstan
Astana
R. Sh. Palymbetov
Kazakhstan
Astana
L. U. Taimuratova
Kazakhstan
Aktau
References
1. A.K. Ivanov-Schitz and I. V. Murin, KSolid-State Ionics (SPbGU, St. Petersburg, 2010), Vol. 2 (in Russian)
2. V.I. Fistul, Heavily doped semiconductors (Nauka, Moscow, 1967) 416 p. (in Russian)
3. H. Liu et al., Nature Materials 11 (2012) 422–425.
4. T.W. Day et al., Materials for Renewable and Sustainable Energy 3 (2014) 26.
5. S. Ballikaya et al., J. Mater. Chem. A 1 (2013) 12478–12484.
6. K. Tyagi et al., J. Phys. Chem. Sol. 81 (2015) 100–105.
7. L. Yang et al., Acta Materialia 113 (2016) 140–146.
8. P. Qin et al., Inorg. Chem. Front. 4 (2017) 1192–1199.
9. M.A. Korzhuev, Physics 11 (1993) 3043. (In Russian)
10. M.A. Korzhuev, St. Petersburg: NINP RAS (2002) 133–138. (In Russian)
11. K. Kirihara et al., Journal of Alloys and Compounds 342 (2002) 469–472.
12. D.B. Brown et al., Inorganic Chemistry 19(7) (1980), 1945–1950.
13. S.D. Kang et al., Materials Today Physics 1 (2017) 7–13.
14. Z.H. Ge et al., Advanced Energy Materials 6 (2016) 1600607.
15. M.M. Kubenova et al., Nanomaterials 11(9) (2021) 2238.
16. N.Kh. Abrikosov et al., Semiconducting Chalcogenides and Alloys on Their Basis (Nauka, Moscow, 1975) 220 p. (In Russian)
17. I.P. Suzdalev, Nanotechnology: Physicochemistry of nanoclusters, nanostructures and nanomaterials (LIBROCOM, Moscow 2009) 592 p. (in Russian)
18. M.Kh. Balapanov et al., Bulletin of the Russian Academy of Sciences. Physics (2005) 69(4) 545–548. (In Russian)
19. M.Kh. Balapanov et al., Bulletin of the Bashkir University 26(4) (2021) 961–964. (In Russian)
20. H.L. Liu et al., Nat. Mater. 11 (2012) 422–425.
21. S.M. Sakhabayeva et al., Recent Contibutions to Physics 4(79) (2021) 72–81.
Review
For citations:
Kubenova M.M., Balapanov M.K., Ishembetov R.K., Kuterbekov K.A., Almukhametov R.F., Bekmyrza K.Z., Kabyshev A.M., Palymbetov R.S., Taimuratova L.U. Thermal conductivity of new nanocomposite superionic semiconductors K0.01Cu1.96S, K0.02Cu1.95S, K0.03Cu1.94S, K0.04Cu1.93S, K0.05Cu1.94S. Eurasian Journal of Physics and Functional Materials. 2023;7(3):197-206. https://doi.org/10.32523/ejpfm.2023070307