Analysis of (11Li+9Be)-reaction in the framework of the time-dependent Schrodinger equation
Abstract
Neutron transfer and nucleus breakup cross sections in (11Li + 9Be) -reaction are calculated at energy range up to 32 MeV/nucleon. The evolution of probability density of external weakly bound neutrons of 11Li and the probabilities of neutron transfer and nucleus breakup are determined based on a numerical solution of the time-dependent Schrodinger equation. Our calculation results are agree with the experiment.
About the Authors
A. K. AzhibekovKazakhstan
K. A. Kuterbekov
Kazakhstan
V. V. Samarin
Russian Federation
References
1. K.A. Kuterbekov et al., Chinese Journal of Physics 55 (2017) 2523-2539.
2. A.M. Kabyshev et al., J. Phys. G Nucl. Part. Phys. 45 (2018) 025103.
3. R.E. Warner et al., Phys. Rev. C54 (1996) 1700-1709.
4. L. Chen et al., High Energy Phys. Nucl. Phys. 31 (2007) 1102.
5. A.C.C. Villar et al., Physics Letters B268 (1991) 345-350.
6. M.Wang et al., Chin. Phys. C36 (2012) 1603-2014.
7. G.R. Satchler, Direct Nuclear Reactions (Oxford University Press, Oxford, 1983) 427.
8. V.I. Zagrebaev and V.V. Samarin, Physics of Atomic Nuclei 70 (2007) 1038-1051.
9. V.I. Zagrebaev et al., Physical Review C75 (2007) 035809.
10. V.V. Samarin and K.V. Samarin, Bull. Russ. Acad. Sci. Phys.74 (2010) 598-601.
11. V.V. Samarin and K.V. Samarin, Bull. Russ. Acad. Sci. Phys. 76 (2012) 508-511.
12. V.V. Samarin, EPJWeb of Conference 66 (2014) 03075.
13. V.V. Samarin, EPJWeb of Conference 86 (2015) 00040.
14. V.V. Samarin, EPJWeb of Conference 117 (2016) 08018.
15. J.H. Wilkinson and C. Reinsch, Handbook for Automatic Computation Linear Algebra (Sprunger-Verlag, Berlin, 1971) 439.
16. M.E. Riley and B. Ritchie, Phys. Rev. A59 (1999) 3544-3547.
17. R. Anne et al., Phys. Lett. B250 (1990) 19-23.
Review
For citations:
Azhibekov A.K., Kuterbekov K.A., Samarin V.V. Analysis of (11Li+9Be)-reaction in the framework of the time-dependent Schrodinger equation. Eurasian Journal of Physics and Functional Materials. 2018;2(4):301-306. https://doi.org/10.29317/ejpfm.2018020401