Preview

Eurasian Journal of Physics and Functional Materials

Advanced search

Structure study of Al+Al2O3 composite by atomic force microscopy

https://doi.org/10.29317/ejpfm.2018020404

Abstract

The structure of a metal matrix composite based on aluminum containing 6, 17 and 24 wt % Al2 O3 was studied by atomic force microscopy. The  composite was prepared by the method of magneticpulse compaction from  aluminum nanopowder obtained by the electric wire explosion method. The samples compacted at 400 ◦ C have more clearly expressed grain boundaries  than those obtained at room temperature. The structure of a composite subjected to dynamic plastic deformation is studied.

About the Authors

D. S. Koleukh
Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences
Russian Federation


A. S. Kaygorodov
Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences
Russian Federation


S. V. Zayats
Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences
Russian Federation


S. N. Paranin
Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences
Russian Federation


References

1. S. Abrate, The aeronautical journal 103(1029) (1999) 536.

2. A. Kurzawa et al., Composite Structures 201 (2018) 834.

3. M. Grujicic, B. Pandurangan, B. d’Entremont, Materials and Design 41 (2012) 380.

4. A. Tasdemirci, G. Tunusoglu, M. Guden, International Journal of Impact Engineering 44 (2012) 1.

5. S. Feli, M. E. Aalami Aaleagha, Z. Ahmadi, International Journal of Impact Engineering 37(5) (2010) 561.

6. K.A. Verma et. al., International Journal of Mechanical Engineering and Technology 8(7) (2017) 1532.

7. S. Divagar et. al., International Journal of Applied Engineering Research 10(83) (2015) 47.

8. B. Kerkwijk et al., Advanced Engineering Materials 1(1) (1999) 69.

9. A.I. Gusev, A.A. Rempel, Nanocrystalline Materials (Cambridge International Science Publishing, 2004) 351 p.

10. M. Ju. Gutkin, I. A. Ovid’ko, Uspehi mehaniki 1 (2003) 68. (In Russian)

11. F. Mjett’juz, R. Rolings, Kompozitnye materialy. Mehanika i tehnologija (M.: Tehnosfera, 2004) 408 p. (In Russian)

12. E. Bonetti et al., NanoStructed Materials 9 (1997) 611.

13. V.V. Ustinov, N.I. Noskova, Problemy nanokristallicheskih materialov (Ekaterinburg: UrO RAN, 2006) 202 p. (In Russian)

14. A.R. Andrievskij, I.I. Spivak, Prochnost’ tugoplavkih soedinenij i materialov na ih osnove (Cheljabinsk: Metallurgija. Cheljabinskoe otdelenie, 1989) 368 p. (In Russian)

15. N. P. Ljakishev, M.I. Alymov, Rossijskie nanotehnologii 1(1-2) (2006) 71. (In Russian)

16. R.Z. Valiev, I.V. Aleksandrov, Nanostrukturnye materialy, poluchennye intensivnoj plasticheskoj deformaciej (M.: Logos, 2000) 272 p. (In Russian)

17. Yu.A. Kotov, Journal of Nanoparticle Research 5(5-6) (2003) 539.

18. V.V. Ivanov et al., Materialovedenie 5 (1997) 49. (In Russian)

19. V.A. Mironov, Magnitno-impul’snoe pressovanie poroshkov (Riga: Zinatne, 1980) 196 p. (In Russian)

20. V.V. Ivanov et al., Rossijskie nanotehnologii 1(1-2) (2006) 201. (In Russian)


Review

For citations:


Koleukh D.S., Kaygorodov A.S., Zayats S.V., Paranin S.N. Structure study of Al+Al2O3 composite by atomic force microscopy. Eurasian Journal of Physics and Functional Materials. 2018;2(4):326-330. https://doi.org/10.29317/ejpfm.2018020404

Views: 400


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2522-9869 (Print)
ISSN 2616-8537 (Online)