Preview

Eurasian Journal of Physics and Functional Materials

Advanced search

Magnetron deposition of yttria-stabilised zirconia electrolyte for solid oxide fuel cells

https://doi.org/10.29317/ejpfm.2018020302

Abstract

The aim of the article is to review the latest achievements in the field of magnetron deposition of thinfilm yttria-stabilised zirconia (YSZ) electrolyte for solid oxide fuel cells (SOFC). The main attention is paid to the use of magnetron sputtering for formation of YSZ electrolyte up to 10 μm thick on the anode substrates of intermediate-temperature SOFCs operating at a temperature of (600 - 800)°C . The influence of the types of power sources and such deposition parameters as substrate temperature, substrate bias voltage, post-annealing treatment, etc., as well as the morphology of the anode substrate surface on the microstructure and properties of the deposited electrolyte is analyzed. It is shown that the magnetron sputtering method, despite its relatively high cost and complexity, is applicable to large area SOFC cells and is competitive compared to traditional methods of electrolyte formation, such as tape casting, tape calendering, electrophoretic deposition and screen printing.

About the Authors

A. A. Solovyev
Institute of High Current Electronics SB RAS
Russian Federation


A. V. Shipilova
Institute of High Current Electronics SB RAS
Russian Federation


S. V. Rabotkin
Institute of High Current Electronics SB RAS
Russian Federation


I. V. Ionov
Institute of High Current Electronics SB RAS
Russian Federation


E. A. Smolyanskiy
Tomsk Polytechnic University
Russian Federation


References

1. S.N. De Souza et al., Solid State Ionics 98 (1997) 57.

2. D. Keket al., Journal of the European Ceramic Society 21 (2001) 1861.

3. Y. Yoo, Journal of Power Sources 160 (2006) 202.

4. G.B. Jung et al., Int. J. Hydrogen Energy 41 (2016) 21802.

5. B. Hobein et al., Journal of the European Ceramic Society 21 (2001) 1843.

6. J. Garcia-Barriocanal et al., Science 321 (2008) 676.

7. A.R.Hanifi et al.,Scientific Reports 6 (2016) 27359.

8. F. Yi et al., J. Fuel Cell Sci. Technol. 11(3) (2014) 0310061.

9. Y. Zou et al., Int. J. Hydrogen Energy 36(15) (2011) 9195.

10. M. Gupta et al., J. Electrochem. Soc. 163(9) (2016) F1059.

11. T. Hill et al., International Journal of Electrochemistry 2011 (2011) 479203.

12. S.H. Kim et al., J. Nanosci. Nanotechnol. 11(5) (2011) 4615.

13. S.Heirothet al., Journal of the European Ceramic Society 30 (2010) 489.

14. J.L.M. Rupp et al., Chem. Mater. 19(5) (2007) 1134.

15. J. H. Shim et al., Chem. Mater. 19(15) (2007) 3850.

16. N.V. Gelfond et al., Inorganic Materials 45(6) (2009) 659.

17. E. Courtin et al., Journal of Power Sources 206 (2012) 77.

18. H.J. Kim et al., Journal of Power Sources 327 (2016) 401.

19. Y.M. Xie et al., Acta Phys.-Chim. Sin. 33(2) (2017) 386.

20. L.R. Pederson et al., Vacuum, 80 (2006) 1066.

21. P.J. Kelly et al., Vacuum 56 (2000) 159.

22. V.O. Oskirko et al., Instruments and Exp. Tech. 57(5) (2014) 594.

23. K. Sarakinos et al., Surface and Coatings Technology 204(11) (2010) 1661.

24. J. Lin et al., Journal of Physics D Applied Physics 46 (2013) 084008.

25. D.E. Ruddell et al., Thin Solid Films 445 (2003) 14.

26. D. Kek et al., Journal of the European Ceramic Society 21 (2001) 1861.

27. H. Wang et al., Solid State Ionics 192 (2011) 413.

28. W. Ensinger, Surface and Coatings Technology 80 (1996) 35.

29. R. Nedelec et al., Journal of Power Sources 205 (2012) 157.

30. P. Coddet et al., Fuel Cells 11(2) (2011) 158.

31. H.Y. Jung et al., J. Electrochem. Soc., 153 (2006) 961.

32. A. Ansar et al., Proc. Inter. Thermal Spray Conf., Las Vegas, USA (2009).

33. L. Jia et al., J. Alloys Compd. 424 (2006) 299.

34. W. Baoet al., J. Membr. Sci. 259 (2009) 103.

35. B. Meng et al., Mater. Sci. Eng. 150 (2008) 83.

36. S. Sonderby et al., Surface and Coatings Technology 206 (2012) 4126.

37. S. Sonderby et al., Surface and Coatings Technology 240 (2014) 1.

38. S. Sonderby et al., Surface and Coatings Technology 281 (2015) 150.

39. A.N. Odivanova et al., Plasma Physics Reports 37(7) (2011) 621.

40. E. Wanzenberget al., Solid State Ionics 159 (2003) 1.

41. N.S. Sochugovet al., Solid State Ionics 231 (2013) 11.

42. A.A. Solov’ev et al., Russian Journal of Electrochemistry 47(4) (2011) 494.

43. A. Solovyev et al., J. Electrochem. En. Conv. Stor. 15(4) (2018) 044501.

44. J. Zhou et al., Int. J.Hydrogen Energy 41(40) (2016) 18203.

45. A. Solovyev et al., Journal of Electronic Materials 45(8) (2016) 3921.

46. S. Liu et al., Journal of Power Sources 183 (2008) 214.

47. M. Kornely et al., Journal of Power Sources 196 (2011) 7209.


Review

For citations:


Solovyev A.A., Shipilova A.V., Rabotkin S.V., Ionov I.V., Smolyanskiy E.A. Magnetron deposition of yttria-stabilised zirconia electrolyte for solid oxide fuel cells. Eurasian Journal of Physics and Functional Materials. 2018;2(3):206-218. https://doi.org/10.29317/ejpfm.2018020302

Views: 452


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2522-9869 (Print)
ISSN 2616-8537 (Online)