Metal-insulator transitions and nanoscale phase separation in various underdoped cuprates
Abstract
We demonstrate that the unconventional electron-phonon interactions, charge inhomogeneity and charge ordering in underdoped cuprates play an important role in metal-insulator transitions and nanoscale phase separation. In so doing, we argue that charge carriers (i.e. hole polarons) in these systems segregate into insulating (carrier-poor) and metallic/superconducting (carrier-rich) regions as a result of their specific ordering. We show that the metal-insulator transitions, nanoscale phase separation and coexisting insulating and metallic/superconducting phases are manifested in the unusual temperature dependences of the magnetic susceptibility and resistivity and in the suppression of superconductivity in various underdoped cuprates.
About the Authors
S. .. DzhumanovUzbekistan
U. T. Kurbanov
Uzbekistan
References
1. M. Imada et al., Rev. Mod. Phys. 70 (1998) 1039 .
2. M.A. Kastner et al., Rev. Mod. Phys. 70 (1998) 897.
3. S. Dzhumanov, Theory of Conventional and Unconventional Superconductivity in the High- Tc Cuprates and Other Systems (Nova Science Publishers, New York, 2013).
4. F. Walz, J. Phys.: Condens. Matter 14 (2002) R285.
5. J. Bardeen et al., Phys. Rev. 108 (1957) 1175.
6. V.I. Belyavsky et al., UFN 175 (2005) 191.
7. S. Ono et al., Physica C 357-360 (2001) 138.
8. G.S. Boebinger et al., Phys. Rev. Lett. 77 (1996) 5417.
9. D. Emin, M.S. Hillery, Phys. Rev. B 39 (1989) 6575.
10. J.T. Devrees, A.S. Alexandrov, Rep. Prog. Phys. 72 (2009) 066501.
11. Ch.B. Lushchik, A. Ch. Lushchik, Decay of electronic excitations with defect formation in solids (Nauka, Moscow, 1989).
12. S. Dzhumanov, P.K. Khabibullaev, Phys. Stat. Sol. B 152 (1989) 395.
13. S. Sugai, Physica C 185-189 (1991) 76.
14. G. Verbist et al., Phys. Scripta T 39 (1991) 66.
15. S. Dzhumanov et al., Physica C 254 (1995) 311.
16. X.X. Bi, P.C. Eklund, Phys. Rev. Lett. 70 (1993) 2625.
17. A. Ino et al., Phys. Rev. B 65 (2002) 094504.
18. D.N. Basov, T. Timusk, Rev. Mod. Phys. 77 (2005) 721.
19. T. Kato et al., Physica C 460-462 (2007) 880.
20. S. Dzhumanov et al., J. Phys. Chem. Solids 73 (2012) 484.
21. A.V. Puchkov et al., J. Phys:Condens. Matter 8 (1996) 10049.
22. Yu.A. Izyumov et al., Usp. Fiz. Nauk. 159 (1989) 621.
23. Sh. Sakita et al., J. Phys. Soc. Jpn. 68 (1999) 2755.
24. Y. Koike et al., Physica C 357-360 (2001) 82.
25. J. Fink et al., Physica C 185-189 (1991) 45.
26. S. Ono et al., Physica C 357-360 (2001) 138.
27. A.A. Abrikosov, Phys. Usp. 41 (1998) 605.
28. S.I. Vedeneev, Phys. Usp. 182 (2003) 669.
29. D. Pines, Tr. J. Phys. 20 (1996) 535.
30. B.P. Stojkovic, D. Pines, Phys. Rev. B55 (1997) 8576.
31. S. Dzhumanov et al., Physica B 440 (2014) 17.
32. P.W. Anderson, The theory of superconductivity in the high- Tc cuprates (Prinston Univ. Press, Prinston, 1997).
33. T. Nakano et al., Phys. Rev. B 49 (1994) 16000.
34. S. Dzhumanov et al., Phys. Lett. A 380 (2016) 2173.
35. S. Dzhumanov, E.K. Karimbaev, Physica A 406 (2014) 176.
36. M. Roulin et al., In Physics and Materials Science of Vortex States, Flux Pinning and Dynamics, Edited by: R. Kossowsky, S. Bose, Z. Durusoy, V. Pan (Springer, New York, 1999) 489.
37. J.W. Loram et al., Physica C 235-240 (1994) 134.
38. S. Tajima et al., Phys. Rev. B 55 (1997) 6051.
Review
For citations:
Dzhumanov S..., Kurbanov U.T. Metal-insulator transitions and nanoscale phase separation in various underdoped cuprates. Eurasian Journal of Physics and Functional Materials. 2018;2(3):219-230. https://doi.org/10.29317/ejpfm.2018020303