Preview

Changing the structure and phasestates and the microhardness of the R6M5 steel surface layer after electrolytic-plasma nitriding

https://doi.org/10.29317/ejpfm.2018020307

Abstract

The article examines the changes of the structural-phase states and the microhardness of the R6M5 steel surface layer after electrolytic-plasma nitriding. It is found that after electrolytic-plasma nitriding of the R6M5 steel surface, diffusion layer is formed, which is a nitrogen martensite. The phase composition of the diffusion layer varies depending on the nitriding temperature. An increase of R6M5 steel microhardness, depending on structural-phase state, is found out. The main factor, in fluencing the increase of microhardness of R6M5 high-speed steel with electrolytic-plasma nitriding, is the formation of nitro . gen martensite with monophasic nitride Fe4N ( γ-phase), as well as the formation of fine inclusions, hardening phases in the surface layers.

About the Authors

B. K. Rakhadilov
East Kazakhstan State University
Kazakhstan


Sh. R. Kurbanbekov
East Kazakhstan State University
Kazakhstan


M. K. Kilishkhanov
East Kazakhstan State University
Kazakhstan


A. B. Kenesbekov
East Kazakhstan State University
Kazakhstan


S. .. Amanzholov
East Kazakhstan State University
Kazakhstan


References

1. A.S. Vereshhaka, Rabotosposobnost’ rezhushhego instrumenta s iznosostojkimi pokrytijami (Mashinostroenie, Moskwa, 1993) 336 s. (In Russian)

2. S.N. Grigor’ev, Tehnologicheskie metody povyshenija iznosostojkosti kontaktnyh ploshadok rezhushhego instrumenta (TNT, Staryj Oskol, 2011) 379 s. (In Russian)

3. A. da Silva Rocha et al., Surface and coatings technology 165 (2003) 176.

4. U. Ion-Dragos et al., Materials testing 55(1) (2013) 47.

5. S.A. Gerasimov et al., Struktura i iznosostojkost’ azotirovannyhstalej (Izd-vo MGTU im.N.Je.Baumana, Moskwa, 2002) 48 s. (In Russian)

6. M. Karimi Zarchi et al., Journal of Materials Research and Technology 2(3) (2012) 213.

7. P. Gupta et al., Surf. & Coat. Technol. 25 (2007) 87.

8. I.V. Suminov i dr., Mir materialov i tehnologij. Tom 1 (Izd. Tehnosfera, Moskwa, 2011) 464 s. (In Russian)

9. M.I. Gol’dshtejn, GrachevS.V., VekslerJu.G. Special’nye stali (Metallurgija, Moskwa, 1985) 408 s. (In Russian)

10. M.K. Skakov et al., Stanochnyj park 6(105) (2013) 30. (In Russian)

11. B.N. Arzamasov i dr., Ionnajahimiko-termicheskaja obrabotka splavov (Izd-vo MGTU im. N.Je. Baumana, Moskwa, 1999) 400 s. (In Russian)

12. Ju.A. Geller, Instrumental’nye stali (Metallurgija, Moskwa, 1983) 527 s. (In Russian)

13. R. Guenzel et al., Pulsed electron-beam treatment of high-speed steel current tools: struchire-phase transformation and wear resistance: 1st International Congress on Radiation Physics, high current electronics and modification of materials 3 (2000) 3037.

14. Ivanov Yu. et al., Surface and Coatings Technology 150 (2002) 188.

15. H.Dzh. Gol’dshmidt, Splavy vnedrenija. Tom 1 (Mir, Moskwa, 1971) 424s.

16. S.A. Gerasimov et al., MiTOM 1 (2004) 13. (In Russian)

17. I. Artinger, Instrumental’nye stali i ih termicheskaja obrabotka (Moskwa, 1982) 312 s. (In Russian)

18. K.B. Usmanov, G.I. Yakunin, Vliyanie vneshnikh sred na iznosistojkost’ rezhushhikh instrumentov (FanUzSSR, Tashkent, 1984) 160 s. (In Russian)


Review

For citations:


Rakhadilov B.K., Kurbanbekov Sh.R., Kilishkhanov M.K., Kenesbekov A.B., Amanzholov S... Changing the structure and phasestates and the microhardness of the R6M5 steel surface layer after electrolytic-plasma nitriding. Eurasian Journal of Physics and Functional Materials. 2018;2(3):259-266. https://doi.org/10.29317/ejpfm.2018020307

Views: 417


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2522-9869 (Print)
ISSN 2616-8537 (Online)