Preview

A brief review of conductivity and thermal expansion of perovskite-related oxides for SOFC cathode

https://doi.org/10.29317/ejpfm.2018020309

Abstract

Cathode materials with mixed ion-electron conductivity (MIEC) are necessary for the development of low or intermediate temperature solid oxide fuel cells. Perovskite and perovskite-related materials are promising candidates on this role. In the review the conductivity and the thermal expansion of materials with various types of perovskite-related structures such as pure perovskite, double perovskite, brownmillerite and Ruddlesden-Popper phases have been compared. And the literature data on the values of the electronic and ionic conductivities, the oxygen diffusion coefficient, and the thermal expansion coefficient of various compositions have been collected. It was shown that the disordered cubic perovskites possess the higher electronic conductivity whereas the layered perovskites and materials with the Ruddlesden-Popper structure have higher ionic conductivity and lower value of thermal expansion.

About the Authors

A. V. Nikonov
Institute of Electrophysics Ural Branch Russian Academy of Sciences
Russian Federation


K. A. Kuterbekov
L.N. Gumilyov Eurasian National University
Kazakhstan


K. Zh. Bekmyrza
L.N. Gumilyov Eurasian National University
Kazakhstan


N. B. Pavzderin
Institute of Electrophysics Ural Branch Russian Academy of Sciences
Russian Federation


References

1. J.T.S. Irvine and P. Connor, Solid Oxide Fuels Cells: Facts and Figures (Springer-Verlag, London, 2013) 230 p.

2. S.C. Singhal and K. Kendall, High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications (Elsevier, Oxford, 2003) 405 p.

3. M. Koyama et al., J. Electrochem. Soc. 147(1) (2000) 87.

4. M. Ni et al., Fuel Cells 7 (2007) 269.

5. S.P. Jiang, J. Mater. Sci. 43 (2008) 6799.

6. N.Q. Minh, Journal of the American Ceramic Society 76(3) (1993) 563.

7. S.P. Jiang, Solid State Ionics 146(1) (2002) 1.

8. I. Yasuda, K. Ogasawara et al., Solid State Ionics 86(2) (1996) 1197.

9. K. Sasaki, J.P. Wurth et al., Electrochem. Soc. 143(2) (1996) 530.

10. S.B. Adler, Chem. Rev. 104(10) (2004) 4791.

11. T.Z. Sholklapper, H. Kurokawa et al., Nano Letters 7(7) (2007) 2136.

12. Y. Takeda et al., Electrochem. Soc. 134 (1987) 2656.

13. C. Sun et al., Journal of Solid State Electrochemistry 14(7) (2010) 1125.

14. N. Mahato, A. Banerjee et al., Progress in Mater. Sci. 72 (2015) 141.

15. M. Yuste et al., Dalton Trans. 40 (2011) 7908.

16. B.C.H. Steele, Solid State Ionics 86 (1996) 1223.

17. S.B.Adler et al., J. Electrochem. Soc. 143 (1996) 3554.

18. B.C.H.Steele, Solid State Ionics 134(1-2) (2000) 3.

19. S.Ya. Istomin et al, Russ. Chem. Rev. 82 (2013) 686.

20. A.S. Bhalla et al., Mat. Res. Innovat. 4 (2000) 3.

21. G. King, P.M. Woodward, Mater. Chem. 20(28) (2010) 5785.

22. S. Vasala, M. Karppinen, Progress in Solid State Chemistry 43(1) (2015) 1.

23. B.V. Beznosikov, K.S. Aleksandrov, Crystallography Reports 45(5) (2000) 792.

24. A.M. Abakumov, M.G. Rozova et al., Russ. Chem. Rev. 73(9) (2004) 847.

25. J. Young, J.M. Rondinelli, Physical Review B 92(17) (2015) 174111.

26. V.M. Goldschmidt, Naturwissenschaften 14(21) (1926) 477.

27. A.M. Glazer, Acta Crystallogr. Sect. B 28 (1972) 3384.

28. P.M. Woodward, Acta Crystallogr. Sect. B 53 (1997) 32.

29. C.J. Howard, H.T.Stokes, Acta Crystallogr. Sect. B 54 (1998) 782.

30. R.J.D. Tilley, Perovskites. Structure-Property Relationships (John Wiley & Sons Ltd., UK, 2016) 315 p.

31. S.N. Ruddlesden, P. Popper, Acta Cryst. 11 (1958) 54.

32. S. Yoo, S. Choi et al., RSC Adv. 2 (2012) 4648.

33. J. Richter, P. Holtappels et al. Monatsh. Chem. 140(9) (2009) 985.

34. J. Sunarso, S.S. Hashim et al., Prog. Energy Combust Sci. 61 (2017) 57.

35. H. Kozuka, K. Ohbayashi et al., Sci. Technol. Adv. Mater. 16 (2015) 026001.

36. R. Pelosato, G. Cordaro et al., J. Power Sources 298 (2015) 46.

37. D.Z. de Florio, F.C. Fonseca et al., Ceramica 50(316) (2004) 275.

38. A.V. Berenov et al., Solid State Ionics 122(1) (1999) 41.

39. T. Ishigaki, S. Yamauchi et al. Solid State Chem 55(1) (1984) 50-53.

40. W.Z. Zhu, S.C. Deevi, Mater. Sci. and Engineering A 328 (1) (2003) 227.

41. T. Ishigaki, S. Yamauchi et al. Solid State Chem. 54(1) (1984) 100.

42. V. Oygarden, T. Grande, Dalton Trans. 42(8) (2013) 2704.

43. Y. Teraoka, H.M. Zhang et al., Mat. Res. Bull. 23(1) (1988) 51.

44. L.-W. Tai, M.M. Nasrallah et al., Solid State Ionics 76(3) (1995) 259.

45. A. Petric, P. Huang, F. Tietz, Solid State Ionics 135(4) (2000) 719.

46. H. Ullmann, N. Trofimenko et al., Solid State Ionics 138(1) (2000) 79.

47. F. Tietz, I. A. Raj et al. Prog Solid State Chem. 35 (2007) 539.

48. F. Tietz, I. A. Raj et al. Solid Sate Ionics 177 (2006) 1753.

49. S.I. Benson, R.J. Chater et al., Ionic and mixed conducting ceramic III, in Electrochemical Society Proceedings (1998) 596.

50. Ch. Ftikos, S. Carter et al., J. Eur. Ceram. Soc. 12(1) (1993) 79.

51. A. Mahata, P. Datta, R.N. Basu, Ceram Int. 43(1) (2017) 433.

52. V.V. Kharton, A,A. Yaremchenko et al., Solid State Electrochem. 3 (1999) 303.

53. J. M. Serra, V.B. Vert et al., J. Electrochem. Soc. 155(2) (2008) B207.

54. J.H. Kim, A. Manthiram, Electrochem. Soc. 155(4) (2008) B385.

55. Q. Zhou, W.C.J. Wei et al., Electrochem. Commun. 19 (2012) 36.

56. L. Jiang, F. Li et al., Electrochim. Acta 133 (2014) 364.

57. A. Tarancon, M. Burriel et al., J. Mater. Chem. 20(19) (2010) 3799.

58. G. Kim, S. Wang et al, J. of Materials Chemistry 17 (2007) 2500.

59. H.T. Lozano, J. Druce et al., Sci. Technol. Adv. Mater. 18(1) (2017) 977.

60. F. Jin, H. Xu et al., J. Power Sources 243 (2013) 10.

61. L. Zhao, J. Shen et al., Int. J. Hydrogen Energy 36(5) (2011) 3658.

62. Y. Wang, X. Zhao et al., Ceram. Int. 40(7) (2014) 11343.

63. A.A. Taskin, A. N. Lavrov, Y. Ando, App. Physics Letters 86 (2005) 091910 .

64. A. Tarancon, S. J. Skinner et al., J. of Materials Chemistry 17(2007) 3175.

65. J. Fleig, J. Power Sources 105(2) (2002) 228.

66. A.A. Taskin et al., Progress in Solid State Chemistry 35 (2007) 481.

67. K.R. Kendall, C. Navas et al., Solid State Ionics 82(3) (1995) 215.

68. A.L. Shaula, Y.V. Pivak et al., Soli State Ionics 177(33-34) (2006) 2923.

69. E. Boehm, J.-M. Bassat et al., Solid State Ionics 176(37) (2005) 2717.

70. H. Zhao, Q. Li et al. Sci. China Chem. 54 (2011) 898.

71. E.V. Tsipis, V.V. Kharton, J. Solid State Electrochem. 15(5) (2011) 1007.

72. S.J. Skinner, J.A. Kilner, Solid State Ionics 135(4) (2000) 709.

73. M.Al Daroukh, V.V. Vashook et al., Solid State Ionics 158(1) (2003) 141.

74. C.N. Munnings, S.J. Skinner, et al. Solid State Ionics 176(23) (2005) 1895.

75. G. Amow, S. J. Skinner, J. Solid State Electrochem. 10(8) (2006) 538.

76. F. Prado, T. Armstrong et al., J. Electrochem. Soc. 148(4) (2001) J7.

77. M.V. Patrakeev, I.A. Leonidov et al., Solid State Sci. 6(9) (2004) 907.

78. A.A. Markov, M.V. Patrakeev et al., Chem.Mater. 19(16) (2007) 3980.

79. J. Mizusaki, I. Yasuda et al., J. Electrochem. Soc. 140(2) (1993) 467.

80. J. Mizusaki, N. Mori et al., Solid State Ionics 129(1-4) (2000) 163.

81. A.N. Petrov, O.F. Kononchuk et al., Solid State Ionics 80(3-4) (1995) 189.

82. H. Hayashi, H. Inaba, et al., Solid State Ionics 122(1-4) (1999) 1.

83. M. Mogensen, D. Lybye et al., Solid State Ionics 174(1-4) (2004) 279.

84. J. C. Boivin, G. Mairesse, Chem. Mater. 10(10) (1998) 2870.

85. H. Iwahara, T. Esaka et al., Solid State Ionics 3/4 (1981) 359.

86. H. Iwahara, H. Uchida et al., J. Electrochem. Soc. 135(2) (1988) 529.

87. H. Ding, X. Xue, Electrochim. Acta. 55(11) (2010) 3812.

88. K. Zhang, L. Ge, et al., Acta Mater. 56(17) (2008) 4876.

89. Zapata, J., Burriel, M. et al. Mater. Chem. A. 1(25) (2013) 7408.

90. M. Burriel, J. Pe?a-Mart?nez et al. Chem. Mater. 24(3) (2012) 613.

91. C.A.J. Fisher, M. S. Islam, Solid State Ionics 118(3-4) (1999) 355.

92. C.A.J. Fisher, M.S. Islam, J. Mater. Chem. 15 (2005) 3200.

93. D. Parfitt, A. Chroneos et al., Phys. Chem. Chem. Phys. 12(25) (2010) 6834.

94. H. S.Kim, H.I. Yoo, Phys. Chem. Chem. Phys. 13(10) (2011) 4651.

95. N.L. Allan, W.C. Mackrodt, Philos. Mag. A 64(5) (1991) 1129.

96. M.S.D. Read, M.S. Islam et al., J. Phys. Chem. B 103 (9) (1999) 1558.

97. L. Minervini, R. W. Grimes et al., J. Mater. Chem. 10 (2000) 2349.

98. A.R. Cleave, J.A. Kilner et al., Solid State Ionics 179(21-26) (2008) 823.

99. J.M. Bassat, P. Odier et al., Solid State Ionics 167(3-4) (2004) 341.

100. M. Yashima, M. Enoki, et al., J. Am. Chem. Soc. 130(9) (2008) 2762.

101. J.M. Bassat, M. Burriel et al., J. Phys. Chem. C 117(50) (2013) 26466.

102. M. Burriel, G. Garcia et al., J. Mater. Chem. 18 (2008) 416.

103. A. Chroneos, D. Parfitt et al., J. Mater. Chem. 20 (2010) 266.

104. R.J. Woolley, M.P. Ryan et al. Fuel Cells 13(6) (2013) 1080.

105. G. Amow, I. Davidson et al., Solid State Ionics 177(13-14) (2006) 1205.

106. M. Burriel, G. Garcia et al., J. Santiso , Chem. Mater. 19(16) (2007) 4056.

107. S. Takahashi, S. Nishimoto et al. J. Am. Ceram. Soc. 93(8) (2010) 2329.

108. Z. Lou, J. Peng et al. Electrochem. Commun. 22 (2012) 97.

109. G. Amow, J. Au et al. Solid State Ionic 177(19-25) (2006) 1837.

110. E.V. Tsipis, V.V. Kharton, J. Solid State Electrochem. 12(9) (2008) 1039.

111. S.Ya. Istomin, et al., Solid State Ionics 179(21-26) (2008) 1054.

112. S. Park, S. Choi et al., Electrochim. Acta 125 (2014) 683.

113. Z. Hu, H. Wu et al., Phys. Rev. Lett. 92(20) (2004) 207402.

114. J. Wang, W. Zhanget al., Phys. Rev. B: Condens. Matter 62 (2000) 14140.

115. M.Garcia-Fernandez et al., Phys. Rev. B: Condens. Matter 78 (2008) 054424.

116. P.G.Radaelli and S.-W.Cheong, Phys. Rev. B: Condens. Matter 66 (2002) 094408.

117. C.de la Calle, A.Aguadero et al., Solid State Sci. 10(12) (2008) 1924.


Review

For citations:


Nikonov A.V., Kuterbekov K.A., Bekmyrza K.Zh., Pavzderin N.B. A brief review of conductivity and thermal expansion of perovskite-related oxides for SOFC cathode. Eurasian Journal of Physics and Functional Materials. 2018;2(3):274-292. https://doi.org/10.29317/ejpfm.2018020309

Views: 4190


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2522-9869 (Print)
ISSN 2616-8537 (Online)