The paper presents the results of a study of the effect of proton and ion radiation on structural changes in nitride ceramics, which have a high potential for using as a structural material for GenIV nuclear reactors. Proton beams with an energy of 1.5 MeV and low-energy helium (He2+) and carbon (C2+) ions with an energy of 40 keV were used, to simulate defect formation and to estimate ceramics radiation resistance. According to the data obtained, it has been established that AlN nitride ceramics have high radiation resistance to the effects of proton radiation. While under irradiation with C2+ ions, the observed degradation of the surface layer is due to the accumulation of carbon in the structure with the subsequent formation of impurity carbide inclusions. It is established that the accumulation of slightly soluble ions of helium and carbon in the structure of the surface layer leads to an increase in the strain and distortion of crystal lattice due to introducing ions into the interstitial lattice and breaking chemical and crystalline bonds.

First Page


Last Page


Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.