The single crystal nickel-based superalloy turbine blades have been studied by means of a neutron tomography method as a non-destructive structural probe. Di erences in neutron attenuation coe cients inside volume of metal bodies of the turbine blades have been found. Those observed di erences could be associated with inner structural incoherence areas arising in the process of operation of the turbine blades. Applications of special algorithms for a three-dimensional imaging data analysis allow obtaining a spatial distribution of those areas inside the turbine blades and estimate those volumes. To study a temperature evolution of structural incoherence areas, the additional neutron tomography studies of the turbine blades with thermal treatment were performed.

First Page


Last Page


Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.